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GENERAL INTRODUCTION
• In the future the ESRF scientific program will make increasing use of the coherence properties of the

x-ray beams

• I have been asked to organize a program of lectures that will provide explanations and information
about coherence experiments to a wide cross section of the ESRF scientific and technical community

• The concepts of coherence theory come from physics and engineering but I and the other speakers
will do our best to make them accessible to people from outside these disciplines

• The treatment I give will not involve quantum theory

• To help people who wish to dig deeper or have reference information available we will:
–  Provide a recommended reading list of well written reference books and will urge the
    library to keep both loan and reference copies of them
–  Make computer files of all of the talks available at
    http://www.esrf.fr/events/announcements/Tutorials
–  Make background information such as full text of proofs of some formulas, hard-to-
    find references, published work by the speakers etc available for download at
    http://intranet.esrf.fr/events/announcements/tutorials
–  Provide (at the same website) EndNote files of citations for the book list and other references

• Later in this session I will give some information about the other talks of the series

• This is meant to be informal so please raise questions or comments at any time
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BOOK LIST (alphabetical order)
Born, M. and E. Wolf (1980). Principles of Optics. Oxford, Pergamon. 
 THE optics text book, Chapter 10 is the classical exposition of coherence theory 
 
Bracewell, R. N. (1978). The Fourier Transform and its applications. New York, McGraw-Hill. 
 I nsightful but still easy to read 
 
Collier, R. J., C. B. Burckhardt, et al. (1971). Optical Holography, Academic Press, New York. 
 O u tstandingly well written, still the best holography book and there are many others 
 
Goodman, J. W. (1968). Introduction to Fourier Optics. San Francisco, McGraw Hill. 
 S till the best in a widening field 
 
Goodman, J. W. (1985). Statistical Optics. New York, Wiley. 
 Written with thought and care - indispensible in coherence studies 
 
Hawkes, P. W. and J. C. H. Spence, Eds. (2007). Science of Microscopy (2 vols). Berlin, Springer. 
 I  am not unbiased but I think this is a unique and outstanding coverage of a wide field by many of the best practitioners 
 
Mandel, L. and E. Wolf (1995). Optical Coherence and Quantum Optics. Cambridge, Cambridge University Press. 
 A nother unique effort - it seems, and is, formidable but chapters 1- 9 (the non-quantum part of interest to us) are no  
           more difficult to read than Born and Wolf! 
 
Paganin, D. (2006). Coherent X-ray Optics. Oxford, Oxford University Press. 
 A new contribution - still evaluating but it looks good 
 
Stark, H., Ed. (1987). Image Recovery: Theory and Application. Orlando, Academic Press. 
 A n excellent collection of articles - no longer new but it has not been superseded by anything else 
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HISTORY OF COHERENCE THEORY
Author Year Citation Comment 

E. Verdet 1869 Ann. Scientif. l’Ecole Supérieure, 2, 
291 

Qualitative assessment of coherence volume 
due to an extended source 
 

M. von Laue 1907 Ann. D. Physik, (4), 2, 1, 795 Introduced correlations for study of the 
thermodynamics of light 
 

van Cittert 1934 Physica, 1 , 201 First calculation of correlations due to an 
extended source 
 

F. Zernike 1938 Phisica, 5 , 785 Used correlations to define a measurable 
“degree of coherence” thus launching modern 
coherence theory 
 

P. M. Duffieux 1946 L’intégral de Fourier et ses 
Application à l’optique, Rennes 

Application of linear system and Fourier 
methods to optics 
 

H. H. Hopkins 1951 Proc. Roy. Soc. A, 208, 263 Application coherence theory to image 
formation and resolution 
 

K. Miyamoto 1961 Progress in Optics, 1, E. Wolf (ed), 
41 

Application of linear system and Fourier  
 methods to optics 

19 
51 

Proc. Roy. Soc. A, 208, 263 Applied coherence theory to image formation 
and resolution 
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WHAT ARE THE COHERENCE EXPERIMENTS ALREADY GOING
ON AT SYNCHROTRONS?

• Scanning transmission x-ray microscopy (STXM)
Coherent illumination required for diffraction-limited resolution but images are NOT coherent!
About 15 instruments world wide

• X-ray holography
Many interesting variants and demonstrations since 1972 but only the ESRF scheme has been
used in scientific investigations

• Coherent x-ray diffraction imaging
Five synchrotron labs now including ESRF and growing

• Phase-contrast imaging
Phase contrast always involves some degree of coherence we will discuss how much later

• X-ray photon correlation spectroscopy
Two dedicated beam lines now - expected to double or triple in the next few years

• New and specialized
Ptychography, magnetism…
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THE BASIC IDEAS OF COHERENCE
• Optical coherence exists in a given radiating region if the phase differences between

all pairs of points in that region have definite values which are constant with time

• The sign of good coherence is the ability to form interference fringes of good contrast

• There are two types of coherence to specify:
– Temporal or longitudinal coherence
   Considers the phase at longitudinally separated pairs of points - ΔΦ(P1:P2)

– Spatial or transverse coherence
   Considers the phase at transversely separated pairs of points - ΔΦ(P3:P4)

• Temporal coherence is determined by monochromaticity
• Spatial coherence is determined by collimation

P2

P4

P3
P1

Note that the wave train duration
at any point is usually much less
than the illumination time (even
if the latter is only one ESRF
pulse)



• If                              we have an ideal monochromatic plane wave - always perfectly coherent

• Our wave train has a limited length (N=10 periods) - as produced by a 10-period undulator
for example - thus it has length                                                                     as shown above

• So we have defined the coherence length and coherence time                  of the wave packet

• Now

• Compare this to
ESRF Lecture Series on Coherent X-rays and their Applications, Lecture 1, Malcolm Howells

TEMPORAL COHERENCE COMES FROM THE LENGTH OF THE
WAVE TRAIN WHICH COMES FROM  MONOCHROMATICITY

  

Wave train properties:
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A FINITE COHERENCE WIDTH IS A CONSEQUENCE OF
IMPERFECT COLLIMATION
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Conclusions:

• Tilted wave shows the effect of imperfect collimation - the λ/4 path lag reduces the

contrast of the fringes somewhat but does not destroy them - so this gives a rough guide

to the collimation needed for coherence experiments - we give a more exact one later

• Beam angular spread is often given by the angular subtense of the effective source

I
0

• The coherence width is thus the maximum transverse spacing of a pair of points

from which the light signals can interfere to give fringes of “reasonable” contrast

• If the beam spread FULL angle is A then the coherence width is given by aA ≅ λ/2

Young’s slit experiment
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Young’s double slit experiment with synchrotron x-rays

From BESSY 
beam line mono

W. Leitenberger et al. 

Physica B 336, 36 (2003)  

• With coherent illumination we expect to see interference fringes

• What are the requirements to see fringes?
–  The diffraction patterns of the slits must overlap - consequence for failing; get fringes only in
    the overlap region
–  The coherence width must be greater than d so that the two slits are coherently illuminated -
    consequence for failing;  reduced fringe contrast
–  The coherence length must be greater than the path difference between the interfering rays -
    consequence for failing;  number of fringes limited to the monochromaticity λ/(Δλ)

• Synchrotron beams from a monochromator usually do not limit the number of fringes but in using a
pink beam, for example to make a hologram, this could happen

Slides courtesy 
of Anders Madsen 
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Young’s double slit experiment with synchrotron x-rays

From BESSY 
beam line mono

W. Leitenberger et al. 

Physica B 336, 36 (2003)  

λ=2.1Å, d=11µm
Visibility ~ 80%

λ=0.9Å, d=11µm
Visibility ~ 30%
Coherence width
 less in ratio to λs

Slides courtesy 
of Anders Madsen 

z   Coherence width = λ/(2A)
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DESIGN STUDY FOR AN X-RAY GABOR HOLOGRAM

Θ

1 nm

x = 0.2
mm

Z 1. Suppose we want a resolution of 20 nm with a
sample of size 20 µm

2. Fringe period (twice the zone plate outer zone
width) must be 40 nm so 40 nm = λ/Θ or Θ =
25 mr

3. From the diagram this gives z = 20 mm

4. The maximum path difference between the
interfering rays is

5. So a coherence length > 1.2 µm is needed

6. Thus a monochromaticity λ/Δλ of greater than
1.2 µm/1 nm = 1200 is required - OK

7. By looking at the object plane we conclude that
a coherence width of 0.1 mm is required

8. This means collimation better than 5 µr is
required - OK but we will need to lose some
flux

x 2( )
2

+ z2!
"

#
$

1 2
% z &1.2 µm

Fringe period = ! ",  lc = !
2

#!( ),  aA = ! 2
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WHAT IS COHERENT OPTICS?
EARLIER WE SAID:
• Optical coherence exists in a given radiating region if the phase difference between all pairs of

points in that region has a definite value which is constant with time

• The sign of good coherence is the ability to form interference fringes of good contrast

• Now suppose that a set of points Pi in some region radiates signals coherently in the above sense.
This implies that the detected x-ray intensity at some given point Q can be found by adding together
the (appropriately delayed) complex amplitudes of the signals radiated from the points Pi

• Thus the intensity at Q is given by the COHERENT SUM                     where ui are the arriving
complex amplitudes

•  Note that the complex amplitudes of the signals are summed first.  After that the square modulus is
taken.  This is the essence of coherent optics

• If the points Pi radiated signals with a random phase relationship then the intensity would be given
by the INCOHERENT SUM

• When wave amplitudes are added in a coherent sum it is possible for them to either reinforce or
cancel.  Thus it is possible for a coherent sum to lead to interference fringes.

• On the other hand the wave intensities that are added in an incoherent sum are always positive and
can never cancel.  Thus an incoherent sum can never lead to fringes

• Coherent optics has become extremely important since the invention of the laser

IQ = ui
i
!

2

IQ = ui
2

i
!
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THE DIFFRACTION INTEGRAL

ds is an area element of the surface in the open aperture Σ in the otherwise opaque screen. uP and
uQ are the complex amplitudes at the typical points P and Q and k0 = 2π/λ.

We are especially interested in diffraction by a transparency distribution in a plane screen.  In this case
the discrete source points Pi

 can be replaced by small elements of the surface area and the intensity can
be calculated by an integral known as the RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL
as follows

IQ x1, y1( ) = uQ
2

=
1
i!

uP x, y( )
eikr cos"

r
ds

#

$
2

See Goodman 1968, equation 3-26
for an excellent treatment

P

Q

x,y x1,y1

r

z

surface Σ

Coherent
illumination

So what is the
coherence
condition?θ
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RECASTING THE DIFFRACTION INTEGRAL FOR OUR
APPLICATIONS

IQ x1, y1( ) = uQ
2

=
1
i!

uP x, y( )
eikr cos"

r
ds

#

$
2

Approximations:

1. We assume that the diffracting object can be represented by a planar complex-transparency function t(x,y)
[Goodman 1985, para 7.1.1] - for hard x-ray experiments with a monochromator this is often valid - thus
for illumination of the object by a wave uP(x,y) the exit wave is uP(x,y)t(x,y)

2. θ is small so cos(θ) ≈ 1

3. r in the denominator can be replaced by the constant z and taken outside the integral

4. r in the exponent can be replaced by the following binomial approximation

This is known as the Fresnel approximation.  The diffraction integral thus becomes
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IQ x1, y1( ) = uQ
2

=
1

i!z
uP (x, y) t x, y( )e
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!z

x1#x( )
2
+ y1#y( )

2$
%

&
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+(

)
2

Comments:
1. The Fresnel approximation apparently includes focusing but not aberrations ("high-school optics) -

however its validity is much wider than that suggests

2. Our latest form of the diffraction integral is a convolution integral which we will explore shortly

[Goodman 1968 equation 4-10]
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THE FRAUNHOFER APPROXIMATION
(the diffraction pattern of the object is its Fourier transform)

IQ x1, y1( ) = uQ
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1
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IQ x1, y1( ) =
1

i!z
e
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x1
2
+y1
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IQ x1, y1( ) =
1

i!z
t x, y( )e

"
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Let's expand the squares in the exponent

Disappears on
taking the square
modulus

Disappears if we
assume plane wave
illumination

Disappears under a
certain condition

• The condition is called the far-field condition

• It is

• If z is large enough to satisfy it, the detector provides a linear mapping of the
diffraction angles with position

• When the condition is not satisfied then we have the Fresnel Transform

Goodman 1968 equation 4-13

! x2
+ y2

( )max

"z
<< 1



• If L changes i1 → o1 and i2 → o2,  AND  ai1+ bi2  →  ao1+ bo2 for all a and b,  then L is linear

• Important special case: i(x) = δ (x – x0)  →         L       →  o(x) = h(x, x0)

• h(x; x0) is the output h(x) for a delta-function input at x0 - it is variously known as Green's function, the
impulse response or (in optics) the point spread function - for example it could be the response in the
image plane of a microscope to a delta function input in the object plane at x = x0

• Now suppose that when the delta function in the object plane shifts, the impulse response makes a
corresponding shift but does does not change shape.  We then say that the linear system represented by L
is shift invariant and its point spread function h(x; x0) = h(x – x0)
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DIGRESSION ON LINEAR SYSTEMS
• Suppose an input signal  i(x)  is acted on by an operator L producing an output signal o(x)

i(x)  →         L        →  o(x)

Microscope with
magnification 2x:
Linear shift invariant
system

Input 2

Image plane

Input 1

Output 2

Output 1

Object plane

Origin



The integral is known as a convolution and allows us to calculate the output signal of a linear shift-
invariant system due to a given input signal when the point-spread function of the system is known.
Using Capital letters to indicate a Fourier transform (FT), the Convolution Theorem states that if
the last equation is true then
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CONVOLUTION
i(x)

xxn

Delta function of
strength i(xn)

i x( ) ! i xn( )

n
" # x $ xn( )   %     L    %  i xn( )

n
" h x $ xn( )        

We can represent the input signal as a sum of many delta functions

We can represent the output signal as an integral

o x( ) = i x0( )h x ! x0( )dx0

!"

+"

#    or

o x( ) $ i x( )%h x( )

O !( ) = I !( ) H !( )

O, I - FT's of o and i ξ is the spatial
frequency variable
conjugate to x

H the contrast transfer function - the system
response to a delta function in frequency i. e.
to a sine wave input - H is the FT of h - Note
the sine wave here is a spatial sine wave
which might be a special test sample in the
object plane of a microscope.
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WHY ARE SINE WAVES SO IMPORTANT
Suppose that the input to a shift-invariant linear system is a sine wave of spatial frequency ξ0 - then

i x( ) = e2! i"0x

o x( ) = e2! i"0x #h x( )      (from the last slide)

O $( ) = % " &"0( ) H "( )      (by the Convolution theorem (last slide) plus FT % "( )'( )*=1, shift theorem*)

o x( ) = FT &1 % " &"0( ) H "( )'( )*      (by taking the inverse FT of both sides)

= % " &"0( ) H "( )e2! i"xd"
-+

++

,
= e2! i$0xH "0( )      (by the sifting property of the delta function)

=i x( ) H "0( )

Thus we could write this in normal operator notation as
L i x( ) = i x( ) H !0( )

In other words the action of a linear operator on a sine wave is to produce another sine wave of the
same  frequency multiplied by a constant (H(ξ0)).  Therefore the sine waves are eigenfunctions of
any linear operator and have eigenvalue equal to the H(ξ0) value corresponding to that operator

*The shift theorem of the Fourier transform: see [Goodman 1968] p277, [Bracewell 1978] p121 for the forward transform.  For the
inverse transform (used here) the theorem is the same except the sign of the exponent in the exponential is reversed
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RULES OF COHERENT FOURIER OPTICS IN THE
SPATIAL DOMAIN

IQ x1, y1( ) = uQ
2

=
1

i!z
uP (x, y) t x, y( )e

i"
!z

x1#x( )
2
+ y1#y( )

2$
%

&
'dx dy

#(

+(

)
2

Returning to the diffraction integral in the Fresnel approximation we see that it can be written as a
convolution of the input wave field with the point spread function (x,y are now dummy variables)

IQ x1, y1( ) = uP x, y( ) t x, y( )!
1

i"z
e

i#
"z

x2
+y2$% &'

x1 ,y1

2

We see that the general rules of Coherent Fourier optics in the spatial domain are as follows:

uQ x1, y1( ) = uP x, y( )t x, y( )!
1

i"z
e

i#
"z

x2
+y2$% &'

x1 ,y1

          PROPAGATION IN FREE SPACE

uEXIT x, y( )=uP x, y( ) t x, y( )                                PASSAGE THROUGH A TRANSPARENCY

• Note that for propagation uP(x,y) t(x,y) is the input, uQ(x,y) is the output and the point spread
function is

• We can see this from the above by imagining that the input is a delta function at the origin

1
i!z

e
i"
!z

x1
2
+y1

2#$ %&
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P

Q

x,y x1,y1

r

z

surface Σ

Coherent
illumination

θ

rn
2

= n!z
zone-plate pattern

magnified

Signal at points Q due to the area element at P = u xP , yP( )t xP , yP( )
1

i!z
e

i"
!z

xP #xQ( )
2
+ yP #yQ( )

2$
%&

'
()

P1

• The complex amplitude of the signal at Q due to the area element
at P is the value of the point spread function centered on P1.

•  It's phase relative to the phase at P is constant with time

• In the diagram one should count the black zones to be + and white
ones to be – (they are Fresnel's half-period zones)

• Most of the energy from P is delivered near to P1 which is the
point of minimum phase for signals from P

• The resultant signal at Q is formed by adding vectorially the
signals from all the area elements in Σ - it is then squared to give
the intensity which is detected

WHAT HAPPENS PHYSICALLY WHEN A COHERENT DIFFRACTION
PATTERN IS FORMED?
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RULES OF COHERENT FOURIER OPTICS IN THE SPATIAL
FREQUENCY DOMAIN

Uz=z !,"( ) =  Uz=0 !,"( ) e#i$%z !2
+"2&' ()          PROPAGATION IN FREE SPACE

                                               (note that the transfer function is a pure phase factor)
UOUT !,"( )=UIN !,"( )*T !,"( )                 PASSAGE THROUGH A TRANSPARENCY

By applying the Convolution theorem to "the rules of coherent Fourier optics in the spatial domain" we
obtain the corresponding rules in the spatial frequency domain

ξ is the spatial frequency corresponding to x - it is expressed in cycles per distance unit where the distance
unit is the same as for x

• The spatial frequency of a wave in Fourier optics is closely
related to its angle of propagation

• The frequency of the grating is in the diagram 1/d and the
frequency of the wave diffracted by it is evidently the same

• By the grating equation - 1/d = sinθ/λ

• Thus for small angles the spatial frequency of the wave is
proportional to the angle

• The beam diffracted by a sample and measured at a known angle
(frequency) thus provides information on the strength of  that
frequency in the Fourier decomposition of the sample - this why
diffraction experiments are so useful
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OPTICAL PROPAGATORS

on a receiving plane due to a diverging spherical wave.  Analogously its complex conjugate approximates the

amplitudes describing a converging spherical wave (action of a lens).  The quadratic phase factor above is known

as an optical propagator or Vander Lugt function and is clearly very useful in analyzing optical systems.

The point spread function 1
i!z

e
i"
!z

x2
+y2#$ %&  is the quadratic approximation to the distribution of wave amplitude 

uQ x1, y1( ) = uP x, y( )t x, y( )!
1

i"z
e

i#
"z

x2
+y2$% &'

x1 ,y1

        PROPAGATION A DISTANCE z IN FREE SPACE

uEXIT x, y( )=uP x, y( ) e
(

i#
" f

x2
+y2$% &'                                  PASSAGE THROUGH A LENS OF FOCAL LENGTH f

IQ x1, y1( ) =
1

i!z
e

i"
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x1
2
+y1

2#$ %& uP (x, y) t x, y( )e
i"
!z

x2
+y2#$ %&e

'
2" i
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x1x+y1y[ ]
dx dy
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)
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Example 1: Fourier transforming properties of a lens

Going back to the expanded diffraction integral in the Fresnel approximation

Inserting the lens propagator in place of t(x,y) (which is in contact with uP) the output wavefield is

uQ x1, y1( ) = uP (x, y) e
!

i"
# f

x2
+y2$% &'e

i"
#z

x2
+y2$% &'e

!
2" i
#z

x1x+y1y[ ]
dx dy

aperture
(

Thus when z = f the quadratic phase factors cancel and the output wave field is the FT of the input wave field -
this is a well known property of a simple lens - [Goodman 1968] equation 5-14
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! x;d( ) = e
i" x 2

#d
Carlson and Francis 1977
Goodman 1995
Handbook of holography 1992

We use the notation x = ix + jy in the spatial domain and u = iξ + jη  in the spatial frequency
domain in the following list of properties - these are thus two-dimensional formulas

PROPAGATOR ALGEBRA
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EXAMPLE 2: FRESNEL ZONE PLATES

f

f + nλ/2
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2

+ f 2
= f +
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2

f 1+
1
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rn
2

f 2 +…
"

#
$

%

&
' = f +

n!
2

rn
2

= n! f

• The zones are called Fresnel's half-period zones

• The ray from each zone is delayed half a wave more than the previous one by the lengthening distance to the focus

• The zones are rectangular in shape and alternate zones are opaque

• A Fresnel zone plate is similar to  a Gabor zone plate which is the hologram of a point and has the same zone positions

        Formation of a hologram of a point                            thus the zone positions are the same
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ZONE PLATES IN FOURIER OPTICS LANGUAGE
Consider a plane-wave illuminated Gabor zone plate

t x( ) =
1
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 so at distance z

uP x( ) =
1
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Now consider what happens near the focus when z 6 f  and z 7 f  = 8 (small)

uFOCAL PLANE x( ) =
1
2

+
) x; 2 f( )

8
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    using A9 twice

uFOCAL PLANE x( ) =
1
2

+
) x; 2 f( )

8
7

i" f
4

; x( )      using A10

f f
–1 order

(virtual) focus

Zone
plate

+1 order focus - actual
size ≈1.22 Δrn

zero order (unfocused)
–1 order

Unwanted spherical wave
from virtual focus

focuszero order
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COHERENCE THEORY APPLIED TO X-RAY BEAM LINES
By Malcolm Howells, ESRF Experiments Division, April 21

• Development of coherence ideas with visible light, mathematical description,
experimental meaning

• Spatial coherence by propagation

• Undulators, the one-electron pattern

• Definition of a mode, phase space

• The degeneracy parameter

• Statistics and modeling of a synchrotron light source

• Depth of field effects

• Partially coherent diffraction, why do nearly all synchrotron beams have
horizontal stripes?
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OPTICAL COMPONENTS FOR COHERENT X-RAY BEAMS
By Anatoli Snigirev, ESRF Experiments Division, April 28)

Practical aspects of temporal and spatial coherence for hard X-rays,

how can we measure spatial coherence?

Definition of the coherence requirements on mirrors, crystals and windows,

how close are we to meeting them?

Consequences of failing to meet requirements, strategies for improvement,

what remains to be done?

What new challenges do the “purple-book” experiments pose for optics?

Coherence matching for nanofocusing optics,

single-bounce single-capillary reflectors versus compound refractive lenses

and Fresnel zone plates
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COHERENCE AND X-RAY MICROSCOPES
By Malcolm Howells, ESRF Experiments Division, May 26, (CTRL room)

• Introduction to x-ray microscopes at synchrotrons

• Zone plates

• Transmission x-ray microscopes (TXMs) and scanning transmission x-ray
microscopes (STXMs)

• Sample illumination (condenser) systems, should the illumination be coherent,
is the image coherent?

• Role of beam angle in determining resolution, Fourier optics treatment

• Contrast transfer, reciprocity, influence of coherence on resolution

• Coherence and Zernike phase contrast, Wigner phase contrast

• Are microscopes flux or a brightness experiments?

• Some example results.







 Basic principles

 Optical design

 Zone plates vs to Kirkpatrick-Baez systems?

 High-beta vs low-beta sources?

 Source demagnification vs use of secondary sources?

 Spectromicroscopy and energy tuning

 Use of multi-keV x-rays

 Chemical mapping and X-ray fluorescence

 Radiation damage

 Some applications

Coherence activities at the ESRF: Scanning

transmission x-ray microscopy

By Jean Susini, ESRF Experiments Division



Synchrotron based microprobe techniques

X-Ray Fluorescence

X-ray

spectroscopy

X-ray

Diffraction & scattering

Infrared

FTIR-spectroscopy

• Composition

• Quantification

• Trace element mapping

• Short range structure

• Electronic structure 

• Oxidation/speciation mapping
• Molecular groups & structure

• High S/N for spectroscopy

• Functional group mapping

• Long range structure

• Crystal orientation mapping

• Stress/strain/texture mapping

Phase contrast 

X-ray imaging

• 2D/3D Morphology

• High resolution

• Density mapping



Synchrotron based hard X-ray microprobe

Photodiode

Undulator

 

monochromator

X-ray lens

Aperture

Sample 

raster scanned

Fluorescence

detector

CCD

Diffraction

CCD

Alignment & imaging

• Spatial resolution : 0.05-2µm 

• Spectral resolution : ΔE/E ~ 10-2 - 10-4

• Averaged flux : 1010 – 1013photons/s/µm2
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COHERENT X-RAY DIFFRACTION IMAGING: I
Malcolm Howells, ESRF, Experiments Division, June 23

• The basic idea: measure the intensities, compute the phases

• Why the need for coherence?

• Schematic experiments and algorithms

• Oversampling: is it necessary?

• History, active groups and their achievements

• Experimental realities and limitations, computational challenges

• Radiation damage limitations

• Resolution-flux scaling, ways around the damage limit?

• Alternative schemes – ptychography



X-ray Photon Correlation Spectroscopy

 Anders Madsen, June 30

• XPCS overview

• Speckle

• Correlation functions

• Setup and detectors for XPCS

• Scientific highlights

• Complementary methods

• XPCS at 4th generation sources
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COHERENT X-RAY DIFFRACTION IMAGING: II
Malcolm Howells, ESRF Experiments Division, July 7

• Summary of present achievements and future projections in CXDI and other
coherence techniques

• Details of ALS results and their implications

• How do we know the resolution?

• Detectors, multiple exposures

• Choice of wavelength

• Resolution-exposure-time tradeoffs with a purpose-built beam line

• Beam-line design, the Berkeley COSMIC project

• What are reasonable performance expectations for the future?

• Benefits of the ESRF upgrade, Comparison with other techniques

• New opportunities for time-resolved and damage-avoiding experiments with
x-ray free-electron lasers

• Conclusion



Anatoly Snigirev (April 28) 

Optical components for coherent x-ray beams 

Practical aspects of temporal and spatial coherence for hard X-rays,

how can we measure spatial coherence?

Definition of the coherence requirements on mirrors, crystals and windows, 

how close are we to meeting them? 

Consequences of failing to meet requirements, strategies for improvement, 

what remains to be done? 

What new challenges do the “purple-book” experiments pose for optics? 

Coherence matching for nanofocusing optics,

single-bounce single-capillary reflectors versus compound refractive lenses 

and Fresnel zone plates


