Dynamic imaging of the lungs: quantification

Curvature analysis to automatize alveoli shape analysis (recruitment?)

Time resolved alveoli structure in vivo

Ventilation and ECG

Heterogeneous distention or homogeneous cyclic opening-collapse of alveoli?

Figure 7.7. Tomographic slices of rats lungs at different breath-hold peak-inspiratory pressures: (a) 5 cmH₂O; (b) 10 cmH₂O; (c) 15 cmH₂O. The marked area indicates the region of biggest stretching (approximate change in diameter from $350\,\mu\text{m}$ to $450\,\mu\text{m}$, the green arrows indicate regions that are very little changed upon intubation, while the red arrows show a region where new alveolar structures appear, which however originate from "deeper" slices.

The Fly

Daniel Schwyn Imperial College London

Rajmund Mokso

The classical approach to time-resolved tomography

Dynamic studies in 3D are possible if the rate of structural changes in the sample $\{V_{EVOL}\}\$ < spatial resolution $\{\delta R\}$ /scan time $\{t_{SCAN}\}$)

Mokso et al, J/ Phys. D. 2013

In vivo fly imaging setup

■ Experimental setup.

- (1) Beam
- (2) Sample
- Scintillator
- (4) Detector / CMOS camera
- (5) Cryojet
- (6) Fan (for airflow)
- (7) High-speed Camera
- (8) Rotation stage
- (9) Robotic stage (to release fly)

Exposure + Readout	300 + 100 [μs]
Number of projections	a) 1x 8051 (3.3s) SSS b) 1x 1251 (0.5s) SFS c) 6x 1251 (3s) MFS
Voxel size	(3 μm) ³
X-ray energy spectra	Polychromatic (~ 30 keV see slice data) Monochromatic (18 keV, see renderings)

Schwyn et al. Synch. Rad. News 2012

Optical flow guided retrospective gating

Image-based grouping of radiographs

The usual way of gated tomography is to use a gating signal to trigger acquisition

In our case: no external gating signal; Group radiographs according to wing beat phase (e.g. upstroke /) using cross correlation.

The flight of insec

Survival ~ 3 s

3 kHz effective temporal resolution
10-20 µm spatial resolution

Daniel Schwyn Imperial College London Rajmund Mokso

Phase tomography vs. edge enhancement

Phase contrast tomography

Mokso et al., J. Phys. D, 2013

Phase tomography

Liquid Foams

Christophe Raufaste

Benjamin Dollet

Stephan Santucci

Kevin Mader

Food foaming in 3D at 20 Hz

Images: Kevin Mader

- Optimize extrusion processing and extrudor design
- Quantify the stability of foam lamellae in food production
- Elongation contraction flow of non-Newtonian fluids

