

Local tomography artifacts

Original

ZP=0.5

ZP=1.5

Local tomography artifacts

- Simple lateral sinogram extension
 - ✓ Insensitive to truncation degree
 - ✓ Insensitive to position of region of interest
 - ✓ Good results for structural analysis

- Non quantitative
- X Difference in absolute value from slice to slice
- Calibration points if sample comparison needed
- More involved algorithms if absolute values needed

Local tomography artifacts

- Many ideas present in the medical imaging community
 - ✗ Specific for medical applications
 - Patent protected
- Various technique for projection completion
 - Smooth continuation
 - Iterative methods (e.g. sparsity, statistical) Computationally heavy
- Back projection of the first (Hilbert) or second (Lambda) derivative of projections
 - A priori information needed
 - For specific geometries
- Zoom-in tomography
 - Multiple scans needed

Take-home message

- Synchrotron-based tomographic microscopy is a powerful method for non-destructive visualization and quantification of structural information
- At modern synchrotron sources, it can cover a broad range of length (10s nanometers -10s micrometers) and temporal (down to 20 Hz) scales
- With the increasing power of the HPC infrastructure, advanced tomographic reconstruction algorithms can help pushing temporal, spatial and density resolution
- Reality is often different from theory For truly quantitative imaging, many different aspects need to be taken into account

PAUL SCHERRER INSTITUT

Acknowledgment

TOMCAT team

Monday, May 15, 2017 Federica Marone – HSC19

Thank you for your attention

Mean curvature colored dendrite (Al/Cu alloy) Image: courtesy J. Fife