

Radiography & Tomography

Federica Marone

Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland

Contents

Mini-tutorial on X-ray tomography

- Beer-Lambert law
- Tomographic reconstruction algorithms
 - Analytical algorithms
 - Iterative algorithms

Examples

Practical issues

- Flat field correction
- Local tomography

X-ray imaging yesterday...

X-ray micro-radiography of a fruit fly

X-ray sources of the 21st century

Röntgen's Lab, Late 19th century

Swiss Light Source, Today

Monday, May 15, 2017

uzh | eth | zürich Why a synchrotron for imaging ?

PAUL SCHERRER INSTITUT

Monday, May 15, 2017

Mini-tutorial on X-ray tomography

X-ray interaction with matter

- Photoelectric effect
- Elastic scattering
- Compton scattering

X-ray interaction with matter

Photoelectric effect

Monday, May 15, 2017

Beer-Lambert law

- Monochromatic radiation
- Homogeneous object

 $\mu = \text{linear attenuation coefficient}$ $\mu \propto \sigma = \sigma_{ph} + \sigma_{cs} + \sigma_{rs} + \dots$

PAUL SCHERRER INSTITUT

Slicing Imaging – Why ?

Tomography means imaging by sections or slices.
 (From the Greek word *tomos*, meaning "a section" or "a cut")

Radiographic projection

Tomographic slice

Monday, May 15, 2017

Beer-Lambert law

- Monochromatic radiation
- Homogeneous object

 $\mu = \text{linear attenuation coefficient}$ $\mu = \sigma_{ph} + \sigma_{cs} + \sigma_{rs} + \dots$

Beer-Lambert law

• Inhomogeneous object

Radon Transform

Beer-Lambert law

$$I = I_0 \cdot e^{-\mu_1 \Delta x} \cdot e^{-\mu_2 \Delta x} \cdots e^{-\mu_n \Delta x} = I_0 \cdot e^{-\sum_{n=1}^N \mu_n \Delta x}$$

Tomographic reconstruction algorithms

- Radon Transform
- Fourier Slice Theorem
- Analytical algorithms
 - Direct Fourier Methods
 - Filtered Backprojection
- Iterative algorithms
 - Algebraic
 - Statistical

Radon transform

 The Radon transform in 2D is the integral of a function over straight lines and therefore represents the projections data as obtained in a tomographic scan

$$R(t,\phi) = \int_{l} \mu(\mathbf{x},\mathbf{y}) dl$$
$$R(t,\phi) = P_{\phi}(t) \coloneqq -\ln\left(\frac{I_{\phi}(t)}{I_{0}}\right)$$
$$R(t,\phi) = \int_{0}^{+\infty} \mu(\mathbf{x},\mathbf{y}) \delta(x\cos\phi + t)$$

$$R(t,\phi) = \int_{-\infty} \int_{-\infty} \mu(x,y) \delta(x\cos\phi + y\sin\phi - t) dx$$

Wanted !

Radon transform

- The Radon transform was introduced by Radon, who also provided a formula for the inverse transform
- The inverse of the Radon transform can be used to reconstruct the original density from the projection data, and thus it forms the mathematical underpinning for tomographic reconstruction
- Radon found the solution to the tomographic problem already in 1917
 - but assumes an infinite number of projections and continuous projection functions
 - while we only have a **finite** number of projections and a **finite** number of detector points.

$$R(t,\phi) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mu(x,y) \delta(x\cos\phi + y\sin\phi - t) dx dy$$

Wanted !

Radon transform

 The Radon transform is often called a sinogram because the Radon transform of a Dirac delta function is a distribution supported on the graph of a sine wave

f(x,y)=f'(t,s)

Fourier Slice Theorem

Direct Fourier Methods

- 1D FFT of the projections
- Filtering
- Resampling
- 2D inverse FFT

Direct Fourier Methods - resampling

- Interpolation
 - Limited accuracy
- Gridding
 - Most accurate Fourier reconstruction method
 - Mapping by convolution with FFT of w(x,y)

Gridrec

- W(x): 1D Prolate Spheroidal Wave Functions (PSWF) of zeroth order
- W(x,y): maximally concentrated in a square region of interest
- FFT(w(x,y)): concentrated as much as possible around 0
- PSWF: calculated using rapidly converging expansion in terms of Legendre polynomials
- PSWF and FFT (PSWF) can be efficiently computed and stored at run time

Filtered backprojection (mathematical background)

$$-\ln\left(\frac{I_{\phi}(r)}{I_{0}}\right) := P_{\phi}(r) = R(t,\phi) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mu(x,y) \delta(x\cos\phi + y\sin\phi - t) dx dy$$

Image function:

$$\mu(x,y) = \int_{0}^{\infty} \int_{0}^{\infty} \tilde{M}(u,v) e^{j2\pi(ux+vy)} du dv$$

Coord. transform:
Cartesian to Polar

$$\mu(x,y) = \int_{0}^{2\pi} d\theta \int_{0}^{\infty} \tilde{M}(\omega\cos\theta, \omega\sin\theta) e^{j2\pi\omega(x\cos\theta+y\sin\theta)} |g| d\omega$$

with
$$\left\{ \begin{array}{l} u = \omega\cos\theta \\ v = \omega\sin\theta \end{array} \text{ and } g = \left(\frac{\partial u}{\partial \omega} - \frac{\partial u}{\partial \theta} \right) = \left(\frac{\cos\theta}{\sin\theta} - \frac{\omega\sin\theta}{\omega\cos\theta} \right) \right\}$$

Fourier Slice Theorem:

$$\mu(x,y) = \int_{0}^{2\pi} d\theta \int_{0}^{\infty} \tilde{P}(\omega,\theta) e^{j2\pi\omega(x\cos\theta+y\sin\theta)} \omega d\omega$$

Symmetry properties:

$$\tilde{P}(\omega,\theta+\pi) = \tilde{P}(-\omega,\theta)$$

Image function:

$$\mu(x,y) = \int_{0}^{\pi} d\theta \int_{-\infty}^{\infty} \tilde{P}(\omega,\theta) |\omega| e^{j2\pi\omega t} d\omega$$

A. C. Kak, M. Slaney, Principle of Computerized Tomographic Imaging", SIAM Classics in Applied Mathematics 33, New York, 2001, ISBN 0-89871-494-X

Reconstruction using backprojection

- If no a priori information is known, the intensity of the object is assumed to be uniform along the beam path.
- The projection intensity is evenly distributed among all pixels along the ray path

→ Concept of backprojection!

Backprojection of a point ...

Image reconstruction

without pre-filtering

1 projection

0 projections

3 projections

N_o projections

N_o projections

Monday, May 15, 2017

Filtered backprojection

 Image characteristic can be influenced by the choice of a convolution kernel, whereby increasing spatial resolution or edge enhancement also means increasing image noise !

Analytical algorithms - Summary

- ✓ Simple and fast
- Need large number of projections
 - In the order of the number of detector rows
- Cannot include a-priori information
- Not suitable for under-sampled datasets

Direct inversion (historic)

- Brute force approach
 - N equations with N unknowns
 - Need more than N² equations to ensure linear independence

- Sir Godfrey Hounsfield (in the late 60s)
 - Reconstructed the first human head
 - Solved 28000 equations simultaneously
 - Nobel Prize in 1979 together with A. Cormack

Iterative algorithms

Iterative algorithms

Algebraic ReconstructionTechnique (ART)

Iterative algorithms

Optimization problem

Cost function

Iterative algorithms

Algebraic methods (ART,SIRT,)	$f(\mu, d) = \frac{1}{2} \ R\mu - d\ _2^2$	$g(\mu) = 0$
Tikhonov – small norm		$g(\mu) = \lambda \ \mu\ _2^2$
Lasso – sparsity		$g(\mu) = \lambda \ \mu\ _1$
Total Variation (TV) – piecewise constant		$g(\mu) = \lambda \ \nabla \mu\ _1$

Total Variation (TV) – piecewise constant Preserve edges

Dictionary, Nonlocal means, Nonlocal TV, ...

Iterative algorithms

$$\overline{N}_i = N_0^i \cdot e^{-[R\mu]_i}$$

N – expected photon counts i – each pixel in each view

Optimization problem

Cost function

Iterative algorithms

Optimization problem

Cost function

Statistical methods

Negative log-likelihood

$$L(\mu|N) = \sum_{i} N_i \log \overline{N}_i - \overline{N}_i$$

Many cost functions (model geometries, artifacts, ...) Many possibilities

Iterative algorithms

FIRST STEP - Build the cost function

SECOND STEP – Find minimum/maximum

- Optimization techniques
 - Linear/non-linear
 - Least-squares
 - Convex/non-convex
 - Constrained/unconstrained
- Gradient methods
- Gauss-)Newton methods
- Lagrangian methods
- Expectation-maximization algorithms

Iterative algorithms - Summary

- ✓ Can include a-priori information
- Flexible can model almost anything
- Suitable for under-sampled datasets
- Computational intensity
- ✗ Highly dataset specific
- Parameters to tune

Examples

State-of-the-art SRXTM (1-50 um)

1 micron resolution routinely achieved at 10% MTF

Monday, May 15, 2017

Looking into a very small region of the lung

Morphology of lung acini

Haberthür et al., Journal of Synchrotron Radiation, 17(5), 2010 Schittny et al., American Journal of Physiolgy 294 (L246), 2008

Monday, May 15, 2017

The first predator on Earth: 500 Myears ago

Tomographic microscopy of fossil materials

P. Donoghue et al., Nature 442, Aug. 2006

Mimicking volcano eruptions

uzh | eth | zürich Mimicking volcano eruptions

2 cross firing 150W, 980nm cw, class 4 lasers

Gas Evolution in Heated Volcanic Rock

Tracking Bubbles in Heated Rock

Thanks to M. Pistone (ETHZ) and J. Fife (PSI)

Federica Marone – HSC19

r x

uzh | eth | zürich 3D follow-up of dynamic processes

Solid foam

Data courtesy of E. Solorzano and S. Alonso, Univ. Valladolid

In-situ 20 Hz tomographic imaging

- Crack propagation dynamics under tensile load
- 20 (!) 3D volumes per second

Movie playing in real time (9 seconds, 180 frames)

E. Maire, et. al., Int J Fract 1 (2016)

Imperial College London

How does a fly really fly?

Wings beat at 150 Hz !!

2500 X-ray images per second...

Monday, May 15, 2017