

Diffraction contrast tomography and related techniques

Andrew King Synchrotron SOLEIL

W. Ludwig, P. Reischig, L. Nervo, S. Schmiederer, N. Viganò, Y. Guilhem, G. Johnson and many others...

- Introduction
- Motivation
- · Underlying techniques
- · Diffraction contrast tomography
 - Setup, data acquisition and processing
- · Application examples
- · Developments in progress
- · Related techniques

Myself

- Diffraction for strain, stress and damage characterisation
 - Manchester 2001-2005
- Tomography for 3D morphology of porous and granular materials
 - INSA de Lyon 2006
- Diffraction Contrast Tomography for mapping polycrystals and materials applications.
 - Manchester/ESRF/HZG 2009-2013
- At SOLEIL since 2013...
 - PSICHE beamline, tomography for materials science

- Introduction
- Motivation
- · Underlying techniques
- Diffraction contrast tomography
 - Setup, data acquisition and processing
- Application examples
- · Developments in progress
- Related techniques

What are we trying to do, and why?

- · Imaging materials
 - How are they structured?
 - How does the structure determine properties and behaviour?
 - How does the structure change during use?

· This covers a lot of materials science!

Diffraction Contrast Tomography

- · X-ray technique
- · Tomographic concepts and algorithms
- 3D, non-destructive mapping of:
 - Grains (shapes, orientations...)
 - Sample structure (cracks, pores, inclusions...)

- Introduction
- Motivation
- Underlying techniques
- Diffraction contrast tomography
 - Setup, data acquisition and processing
- · Application examples
- · Developments in progress
- · Related techniques

- · Absorption or phase (refraction) contrast
 - Full field radiography + rotation
- Reconstruction of ~density

Standard tomography: Reconstruction

- · Filtered back projection
 - most standard, basic reconstruction technique
- 1 / 2 / 4 / 8 / ... / 1024 / 1800 projections

Aluminium alloy for DVC. M. Fregonese, MATEIS, INSA de Lyon

- Electron penetration is ver limited (<1µm)
- Good 2D mapping
- Difficult to extend to 3D, and only possible destructively.

How to see the grains?

- Absorption and refraction, but X-rays also diffract
- Scattering of radiation from periodic structures (crystals)

Bragg's law: $\lambda = 2d \sin(\theta)$

- Introduction
- Motivation
- · Underlying techniques
- · Diffraction contrast tomography
 - Setup, data acquisition and processing
- · Application examples
- Developments in progress
- · Related techniques

DCT: Closer look at data

- Titanium sample under load, 130 grains
- 0.05° increments
- Showing the diffraction contrasts only
- Strain causes distortion and misorientation in grains
- Causes diffraction spots to spread over several images
- Can also see extinction spots, but significant overlap problems – useful in special cases

DCT: Data processing 1

(1) Acquisition

- 3600-7200 images covering 360°.
- Remove background intensity to leave only diffraction contrast.
- · Moving median filter

(2) Segmentation

- · Identify individual spots
- Spots are 3D objects, because they may spread over a few adjacent images
- 100,000+ spots
- Reduce data volume from 30-60 GB
- Record metadata:
 - Position (u,v,ω)
 - Intensity
 - Size (u,v,ω)
 - Integrated image

• ..

Resulting data (DCT)

- DCT grain map (few 1000 grains), combined with tomographic reconstruction of sample acquired simultaneously.
- Rendering to show all the information: Mg fatigue test specimen.

Absorption contrast tomography data:

High Z precipitates

2 x FIB notches (implanted Ga)

Part of the grain map from DCT shapes; orientations.

All acquired non-destructively, so now can perform an in-situ experiment

Limitations

Synchrotron DCT case

- · Access to synchrotron
- Sample size
 - Sample size, grain size, and pixel size all scale together
- Number of grains
 - ~5000 grains illuminated at once
- Orientation spread
 - low mosiacity (<0.1°-1° intragranular orientation spread)
 - Main limitation in real materials → Developments in progress

- Introduction
- Motivation
- · Underlying techniques
- · Diffraction contrast tomography
 - Setup, data acquisition and processing
- Application examples
- Developments in progress
- Related techniques

Short fatigue cracks

- Microtomography to observe short fatigue crack growth in-situ in a grain mapped sample.
 - FIB notches placed in specific grains
 - In-situ fatigue using machine from INSA de Lyon
 - Use radiographs to monitor crack

A. King et al., Acta Mater. 59 (2011) 6761-6771

۵۷

Other applications

- · Wide range of applications
 - Fatigue
 - IGSCC
 - Deformation
 - Plasticity
 - Twinning
 - Sintering
 - · Particle rotations
 - Grain growth
 - Snow dynamics
 - Paleontology/Biology

- Introduction
- Motivation
- · Underlying techniques
- · Diffraction contrast tomography
 - Setup, data acquisition and processing
- · Application examples
- Developments in progress
- · Related techniques

- Introduction
- Motivation
- · Underlying techniques
- Diffraction contrast tomography
 - Setup, data acquisition and processing
- Application examples
- Developments in progress
- Related techniques

A family of techniques

- Diffraction contrast tomography (DCT)
- 3D X-ray diffraction microscopy (3DXRD)
- · Original grain mapping technique, from which DCT was derived
- High energy diffraction microscopy (HEDM)
 - At APS recently very successful with deformed materials
- · Diffraction tomography
 - Point scanning with a focused beam
- Differential Aperture X-ray Microscopy (DAXM)
 - White beam, point scanning, analyser wire for 3D spatial info.
- Topography
 - Classical diffraction imaging for defects in single crystals
- Dark field x-ray microscopy
 - Recent developments analogous to TEM

1۸

Related presentations HSC19

- · Coherent diffraction imaging talk tomorrow
 - M. Guizar-Sicairos
- Scanning microscopies talk tomorrow
 - M. Cotte
- Wolfgang Ludwig tutorial

