

Holography

Dennis Gábor 1900 – 1979 (1921-24 @ TUB) Nobel Prize Physics

Holography and 3D information

Picture of analog hologram reconstruction from two angles

Teaser: see magnetization on the nanoscale via holography

Mesa Structures, 80 nm, 200 nm pitch, coated with a ferromagnetic thin film

Topography (SEM)

Magnetization

- How does one obtain (magnetic) contrast?
- How can an image be generated?
- How can dynamic processes be captured?

Length and time scales in condensed matter

Study dynamics (space & time) to understand principal mechanisms and macroscopic functionality

need to be sensitive to the entities you want to study (contrast) at the required spatial and temporal resolution

issues with (soft) x-rays

Holography with visible light

Problems with (soft) x-rays

- Efficient beam splitting is difficult
- In particular, reflectivities are only significant for very small glancing angles
- mechanical stability on the order of λ required
- Interference fringes have a separation of ≈λ unless included angle becomes small

Encoding the exit wave

in the holographic measurement, we can encode the wavefield (i.e. amplitude and phase) of the light leaving the object over a certain solid angle

- If that is known, we can calculate how the wavefield propagates forward (in vacuum or a homogeneous medium).
- Alternatively, this just happens when we carry out an analog reconstruction of the image via suitable illumination

Why x-ray holography?

X-ray holography is a high-resolution imaging technique with some unique characteristics.

Why now?

Because we can:

coherent x-ray sources are increasingly available

DLSR - diffraction limited storage rings

FEL - free electron lasers

HHG - high harmonic generation sources

coherent photon flux ∝ source brightness * wavelength²

Coherent soft/hard x-ray sources

Scattering and Phase Problem

$$\langle I(q) \rangle = \langle |E(q)|^2 \rangle = \langle E(q)E^*(q) \rangle$$

Pinhole Sample Detector

Scattering and Phase Problem

Solutions:

- use a lens to form an image
- encode the phase: holography 2.

use addl. information to recover the phase: iterative phase retrieval 3. (CDI, ptychography)

Pinhole

Sample

Detector

Why care about the phase?

Pure absorption objects — No phase shift

A computer experiment...

Phase carries crucial information!

$I(q) = |E|^2 = EE^*$

1. Minimum circ. aperture:

$$I(r) = I_0 \cdot \left(\frac{J_1(2\pi r)}{\pi r}\right)^2$$

J₁ Besselfkt (1)

The diffracted intensity is not easily translated into an image of the object

$$\sin \alpha = 0.61 (\lambda/r)$$
depends on shape of aperture

Chvolution theorem of the Fourier transform

Consequence

If e(x,y) is the transmission of a 2D sample (or "exit wave"), then $FT\{a\} \bullet FT*\{a\}$ is the intensity at the detector

$$\mathcal{F}[e * e] = \mathcal{F}[e] \cdot \mathcal{F}[e]$$

$$e * e = \mathcal{F}^{-1}[\mathcal{F}[e] \cdot \mathcal{F}[e]]$$

The inv. Fourier transform of the detected intensity is the spatial convolution of the real space object (e(x,y)) with itself. "Patterson Map"

Patterson Funktion

Patterson Map

And now, an additional spot makes all the difference!

Patterson Map

the reference aperture makes the Patterson Map easily interpretable: Image of the object!

Holography circumvents the phase problem

Why does this work?

As in a double slit experiment, the relative **phase of the object wave is encoded** relative to a reference wave.

Wikipedia/Stannered

Holography Geometries

Mask-based x-ray Fourier transform holography

FIB

Digital Image Reconstruction

FFT = Patterson Map

S.E. et al, Nature **432**, 885 (2004)

Convolution theorem applied to diffraction:

FT(diffraction) = Autocorrelation (Object)

$$FT (a \otimes b) = FT(a) \cdot FT(b)$$

$$(a \otimes a) = FT^{-1} \{FT(a) \cdot FT(a)\}$$

a (x,y) real space object FT(a) · FT(a) diffraction intensity

- result = complex 2D matrix, containing magnitude and phase!
- spatial resolution today typically 30 50 nm
- Note: Hologram = oversampled diffraction pattern. Iterative refinement possible. See:
 - S. Flewett, et al. PRL 108, 223902 (2012)
 - S. Flewett et al, Optics Expess 28, 29210 (2012)

A prototypical sample system: Ferromagnetic Domains

in ML with perpendicular magnetic anisotropy

e.g.

 $SiN_x / Pd (20 Å) / [Co (4 Å) / Pd (2 Å)]_{20} /AI (30 Å)$

- perpendicular magnetic anisotropy
- Magnetron sputtering
- polycrystalline, grown on thin Si₃N₄ membrane

MFM, top view

ca. $5 \mu m \times 5 \mu m$

Contrast mechanism:

X-ray Magnetic Circular Dichroism XMCD

(i.e. resonant scattering, need suitable photon energy)

Dichroic Hologram (XMCD contrast)

CCD Detector Image

Right circular polarized

Difference (RCP – LCP)

log z-scale

Ferromagnetic Domains in PMA Multilayers.

L vs. M-edge.

Ø 1500 nm

B. Pfau et al, APL 99, 062502 (2011)

Co L₃ XMCD contrast

778 eV, λ = 1.6 nm

Ø 2000 nm

S. Schaffert, New J. Phys. 15, 093042 (2013)

Co M₃ XMCD contrast

 $60 \text{ eV}, \lambda = 20.8 \text{ nm}$

- we obtain amplitude and phase via a direct Fourier inversion of the hologram
- With very intense coherent x-ray pulses, single shot images are possible

T. Wang et al., Phys. Rev. Lett. **108**, 267403 (2012)

Switching behavior of magnetic nanostructures.

Data storage media (HGST BPM test)

B. Pfau et al, APL **99**, 062502 (2011) & APL **105**, 132407 (2014)

Long-term cooperation with O. Hellwig, HGST, now U. Chemnitz

Now we have the basics covered:

- FT Holography = coherent scattering with a suitable reference within the object plane.
- Off-axis geometry & far field → get image via direct Fourier Inversion.
- The complex wave field is encoded, i.e. amplitude and phase are accessible.
- Using x-rays, high resolution imaging is possible.
- q_{max} and Ø reference limit resolution, state of the art ≈15 nm

Now, some extras:

FTH Mask for use with soft x-rays (≈1 keV)

- generated via Focussed Ion Beam (FIB) lithography
- mask approach gives very clean data, but difficult to do for harder x-rays

Scanning Field of View / Backpropagation

Object multiplexing

Multiple Objects

Each object is imaged by its own reference

Schlotter et al., Opt. Lett. **32**, 3110 (2007)

Concept was used in earlier Bit Patterned Media example. Samples only few µm apart, all see same sample environment (B-field)

Many references: modified Uniformly Redundant Arrays

FT Hologram

Coded aperture imaging

2D FFT

decode using URA Info (non-iterative):

C. Günther, J.Opt. **19**, 064002 (2017)

FTH: robust reconstruction as phase is encoded

W.F. Schlotter et al., APL 89, 163112 (2006)

Distance (µm)

1.5

0.5

X-Ray Holography: Amplitude & Phase!

 \rightarrow depth information possible

3D in a single shot (high NA detection)

 $\lambda = 3.1 \text{ nm}$ $\alpha_{\text{max}} = 2.86^{\circ}$

Information from a single hologram.

Numerical focussing via propagation.

Diffr. limited z resolution = depth of focus =

 $=rac{D_{reference}^{2}}{2\lambda}$

FTH with hard x-rays

8 keV, no mask, letter "P" test structure on open membrane, ≈200 nm gold dots as reference

- amplitude and phase contrast
- · also combined with CDI
- 25 nm resolution

L.-M. Stadler et al., PRL 100 245503 (2008)

These were some of the extra benefits of FTH

- can encode multiple objects in one hologram
- can encode object with different x-ray wavelengths (not shown) or at different times (later)
- scanning the field of view is possible
- 3D information can be encoded
- you obtain the wave field, so you can apply "virtual optics" in the computer (not shown)

Temporal resolution

MBI MBI

single shot images

- light pulse has to be sufficiently short to see the relevant process
- need enough photons during the exposure time

need to record frames fast enough

pump-probe

can look at repetitive processes

fs single shot FTH image of magnetic domains (SXR @ LCLS)

- multiple references to boost signal
- FTH reconstruction is very robust and does not need many photons, see also W.F. Schlotter APL 89, 163112 2006

single shot-hologram

reconstruction (magnetization contrast)

single shot at LCLS

- 80 fs pulse
- 778 eV
- 1.5 x 10⁵ photons
- 15 references
- addl. polarizer required as this was prior to delta-Undulator!

T. Wang et al., Phys. Rev. Lett. 108, 267403 (2012)

Soft vs. hard x-ray Split and Delay technology

Soft x-rays @ FLASH

(grazing incidence mirrors)

R. Mitzner et al, *Proc. SPIE* **5920**, 59200D (2005) & Opt. Express 16, 19909–19919 (2008)

Hard X-rays @ XFEL (MID)

(Bragg diffraction, under construction)

E = 5 - 10 keV $\Delta t = -10 \text{ to } 800 \text{ ps}$

 $\Delta t_{XFEL} < 100 \text{ fs}$

Enable experiments on fs and ps dynamics with high spatial resolution

W. Lu et al., AIP Conference Proceedings **1741**, 030010 (2016)

check: 1 Beam Only

Both beams: map temporal information to space

real space object

reciprocal space

reconstruction (FFT)

FLASH @ DESY $\lambda = 23.5 \text{ nm}$

25 fs single shot image

2 Independent, Time-Delayed Images of the Same Object

Pump-probe Holography

1. experiment: pump = magnetic field

- Repetitive experiment
- See only reproducible processes

N.B.: single shot images possible at FELs, 1st expt: T.

one exposure on 2D Detector

Wang et al, PRL **108** 267403 (2012)

2 Research Examples in Detail

using time-resolved holography (pump-probe)

ns, ps Skyrmion Motion

fs
Electron & Spin Currents

Detailed research example

- magnetic skyrmion motion
- ns dynamics
- pump: B-field
- BESSY II

A magnetic bubble is a Skyrmion

Magnetic Bubble with Bloch wall

in a thin film with perpendicular magnetic anisotropy

Topologically equivalent struutures ($\mathcal{N} = 1$)

Bubble Skyrmion

Chiral Skyrmion

Hedgehog Skyrmion

- all cover the sphere completely once
- can be continuously deformed into each other

Here: want to observe intrinsic dynamics of bubble skyrmion

B-pump X-probe FTH: sample design

MBI

Investigation of domain wall motion in response to magnetic field pulses

B-pump X-probe FTH: sample design

MBI

Investigation of domain wall motion in response to magnetic field pulses

Pushing Magnetic Bubbles

Sample & FTH Geometry

pump-probe via FTH

BESSY II single bunch

Observation of gyrotropic motion

[mA]

- Prepare Skyrmion state in external magnetic field (-125 mT)
- Bipolar field pulse (± 35 mT pulse, 3 ns): generate & annihilate 3rd domain
- Skyrmion is displaced from equilibrium position in response to the stray field
- Relaxation through circular trajectory → gyrotropic motion

F. Büttner et al., Nature Physics 11, 225 (2015)

Observation of gyrotropic motion

Ø 550 nm

- Prepare Skyrmion state in external magnetic field (-125 mT)
- Bipolar field pulse (± 35 mT pulse, 3 ns): generate & annihilate 3rd domain
- Skyrmion is displaced from equilibrium position in response to the stray field
- Relaxation through circular trajectory → gyrotropic motion

Topology-driven Dynamics

Skyrmion (N=1) in disk (simulation)

[2]

[1]

Thiele equation of motion for center **R** of *rigid skyrmion:*

$$\mathbf{G} \times \dot{\mathbf{R}} + D\dot{\mathbf{R}} - \partial_{\mathbf{R}}U = 0$$

- Gyrovector G determined by topological charge N and material properties
- Describes vortex well, fails to describe Skyrmion GHz dynamics
- Skyrmion deformation has to be taken into account
- This gives the system an effective mass:

$$-M\ddot{\mathbf{R}} + \mathbf{G} \times \dot{\mathbf{R}} + D\dot{\mathbf{R}} - \partial_{\mathbf{R}}U = 0$$

resulting in two eigenfrequencies [3]

[1] H. Jung et al. Sci. Rep. 1, 59 (2011)

[2] C. Moutafis et al., PRB 79, 224429 (2009)

[3] I. Makhfudz et al., PRL 109, 217201 (2012)

Determination of Skyrmion mass from trajectory

2-frequency fit:

CCW: 1.00 (13) GHz

CW: -1.35 (16) GHz

- existence of eff. mass experimentally confirmed
- large compared to other mag. quasi particles
- topological origin (breathing mode)

F. Büttner et al., Nature Physics 11, 225 (2015). — work in collaboration with AG Kläui

Holographic Imaging Remarks

- B-pump XMCD-FTH-probe realized
 @ BESSY II single bunch
- FTH allows for **flexible sample environment** required to prepare the system and trigger its dynamics (here: static field + pulsed field)
- spatial resolution, here: 40 nm
- outstanding stability of FTH allows very precise tracking of absolute position (≈3 nm), neither vibrations nor drift are are a problem
- sensitivity, here: Magnetization from 9.5 nm Co in 400 nm material observed in transmission. Recent Experiments at PETRA III: 0.5 nm.

Skyrmion Racetrack Memory

Skyrmions can be moved in wires, e.g. via Spin Transfer Torque (here: Simulation)

A. Fert et al. Nature Nanotechnology 8, 152–156 (2013)

Racetrack memory concept

S. Parkin & S.-H. Yang Nat. Nanotech. 10, 195–198 (2015)

 Our current work: Controlled generation of Skyrmions via Spin-Hall-Effect

F. Büttner et al. (arXiv:1705.01927)

FOV Ø 1 μm

Detailed research example

- Spin currents and ultrafast demagnetization
- fs dynamics
- pump: light pulse
- FERMI

fs Dynamics: Ultrafast Optical Demagnetization

Magnetization can be "destroyed" on an ultrafast time scale

Relevant Elementary Processes?

(Hot) Electron Transport

J. Hohlfeld et al., Chem. Phys. **251**, 237 (2000)

Spin-dependent transport of hot electrons

Hot electrons can transport magnetization

due to spin-dependent mean free path for majority vs. minority electrons

PRL 105, 027203 (2010)

PHYSICAL REVIEW LETTERS

week ending 9 JULY 2010

Superdiffusive Spin Transport as a Mechanism of Ultrafast Demagnetization

M. Battiato,* K. Carva,† and P. M. Oppeneer

initially ballistic, later diffusive

Lateral transport: no chemical interface

IR-pump X-ray holography probe

@ FERMI, DiProl

Seeing demagnetization proceed in time and (real) space

IR-pump FTH-probe @ FERMI

- First ever images of non-local demagnetization (3500 shots per image)
- Demagnetization propagation front moves at 0.2 nm/fs, consistent with spin transport
- Some irreversible changes in domain pattern

C. von Korff Schmising PRL **112**, 217203 (2014)

you want to know details on x-ray holography?

B. Pfau and S. Eisebitt: X-Ray Holography in: Synchrotron Light Sources and Free-Electron Lasers, Springer (2015).

available online

FT Hologram - guess what the object looks like.