

BioMedical quantitative X-Ray Imaging

Emmanuel Brun Researcher – Inserm – Université Grenoble Alpes

Outline

- Introduction
- K-Edge Imaging
- Patient imaging at the European synchrotron
- Medical Phase Contrast Imaging
- High Resolution Phase Contrast Imaging for medical research
- Conclusion

A brief history of time in medical imaging

A variety of imaging modalities

Why developing new imaging modalities?

- Spatial resolution
- Contrast sensitivity
- Temporal resolution

K-edge subtraction (KES) imaging (lodine infusion)

KES imaging *in vivo* rabbit

Applications of KES imaging

- High brilliance of synchrotron x-rays
 Direct quantification of contrast elements within organs
- Access to data on organ function: Regional lung ventilation : Xenon Perfusion (organ, tissue): Iodine, Gadolinium
- Spatial resolution : Current resolution on ESRF-ID17 : 1 μm; in vivo ~3 μm

Adam JF et Coll. J Cereb Blood Flow Metab. 2003

Lung Blood Volume (Rabbit)

Suhonen H et Coll. PMB. 2008

Emmanuel Brun – Medical Imaging - Hercules specialized course– May 19th

8

Bertrand et Coll. Eur Heart J. 2005

Dynamic KES-CT: regional lung ventilation

Lung Xe washin:

Emmanuel Brun – Medical Imaging - Hercules specialized course– May 19th

Dynamic KES-CT: regional lung ventilation

- Time constant (τ) of Xe wash-in: $C_{Xe} = C_0 (1 e^{-t/\tau})$
- Specific ventilation (sV) = ventilation/ V_{voxel} : $sV' = 1/\tau$

Constriction sV (1/min)

Simon BA, *J of Clin Mon Comp* 16: 433-442, 2000 Porra et al. *J Appl Physiol* 96: 1899-1908, 2004

Regional ventilation distribution

Bayat S. et al. Am J Respir Crit Care Med 180: 296-303, 2009.

Spatial Resolution

 Best spatial resolution currently available for imaging regional lung function
 Pixel: 47 µm; 1800 projections; Acquisition time : 10 s

Layachi, S. et al. J Appl Physiol 115: 1057–1064, 2013

Results: regional ventilation

 Sample composite KES lomeprol aerosol deposition in 2 representative animals Image voxel : 350×350×700 µm Acquisition time: 2 sec/image MMAD : 2.6 ± 0.1 µm
 Control
 Methacholine

KES-CT of within-tidal changes in regional lung blood and gas

Porra L et al. European Respiratory Journal 44.Suppl 58 (2014): P543.

Patient Imaging at the European Synchrotron

Dose Issue

- 62 million CT exams performed each year in the USA
- the most frequently used 3D medical diagnostic tool
- Recent studies estimated that 3% of the cancers may be attributable to diagnostic CT²
- Cumulative dose of 50 mGy in childhood triples the risk of brain tumor and leukemia³

Brenner DJ, Hall EJ. Computed tomography--an increasing source of radiation exposure. *N. Engl. J. Med.* 2007;357(22):2277–2284.
 De González AB, Darby S. Risk of cancer from diagnostic X-rays: Estimates for the UK and 14 other countries. *Lancet.* 2004;363(9406):345–351.
 Pearce MS, Salotti JA, Little MP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: A retrospective cohort study. *Lancet.* 2012;380(9840):499–505

Imaging conditions

- Patient positioning tomography +/- post injection +/- 3D
- Same beam used for radiotherapy Monochromatic (80 keV)
 Same flux but attenuated (14.5 cm PMMA)
- Integration detector (HPGe)
 Pixel size 350µm * 1cm
 Bem collimated to 2mm (high) * 15 cm (width)
- Distance between patient and detector: 6m

Geometry of acquisition

Comparison with hospital scanner

GE Revolution scanner

Catphan Phantom

Acquisition protocols		Energy	PMMA thickness (cm)	Slice thickness (mm)	Pixel size (mm)	Number of projections (-)	Dose CTDI (mGy)
Hospital	Standard head (patient)	120 kVp	n.a.	1.25	0.44	n.a	33
		250 mA					
	Inner ear (phantom)	120 kVp	n.a.	0.625	0.44	n.a	183
		350 mA					
ESRF	Patient acquisition	80 keV	14.5	2	0.35	1024	93
		191 mA					
	'Low dose' (phantom)	80 keV	18	0.625	0.35	340	14.8

Comparison with hospital CT

Quantitative Comparison

Acquisitio	n protocols	CNR	SNR	MTF (pl/mm)	CTDI (mGy)
Conventional	Standard head	1.94	16.99	10	33
СТ	Inner ear	1.26	10.33	11	183
	Patient acquisition	4.46	540.06	15	93
ESRF	'Low dose'	1.91	217.65	15	14.8