Surface ST vs Image ST

CG rendering Image based ST Surface based ST

Shape ST vs Image ST

CG rendering Image based ST Surface based ST

Shape ST vs Image ST correlation

Direction

Max eigen value

Scale selection

Warping pipeline

Sharpening: $\alpha = -1$

Rounding: $\alpha = 1$

Sharpening, small scale

Sharpening, large scale

(nría_

User study

nría

Conclusion

Perception issues in Visualization

Perception of Depth – Application to DVR evaluation

Perception of Noise – Application to Uncertainty Vis.

Perception of Shape – Application to Image manipulation

In this talk: low level visual perception issues

cognitive levels much more difficult

Take away message: perception matters!

