Visual perception in Visualization

1 Introduction to Scientific Visualization

- 2 Visual Perception: Motivation
- 3 Perception of Depth Application to DVR evaluation
- 4 Perception of Noise Application to Uncertainty Vis.
- 5 Perception of Shape Application to Image manipulation

Georges-Pierre Bonneau, Laboratoire Jean Kuntzmann, UGA, G-INP & INRIA Grenoble

Background

Project-team MAVERICK at INRIA Grenoble & University of Grenoble

Scientific Visualization

a brief introduction

Data <-> Visualization loop

Contaminent transport

Data: concentration : 1 scalar defined in the volume velocity: 1 3D vector defined in the volume

Techniques: Colored Isosurfaces, Colored Arrows

Colormap:

histogram of data perception of colors, HSV or Lab colorspace color deficient vision

Isosurface computation: Marching cube algorithm hundreds of papers on extension, optimization...

Rendering of vectors:

3d cylinders, occlusion and shading to resolve orientation ambiguity subsampling to remove clutter norm as colors

Merging of neutron stars

High density: planar slice colormap

Mean density: Isosurface transparency from orientation

Low density: Direct volume rendering

Data: MRI

http://www.unige.ch/

(nría_

	Xi	Y _j	Z _k	Density
	0.000 0.000	0.000 0.000	0.000 0.015	243 175
		•		
1	•	•	•	•
103 7	•	•	•	•
	0.000	0.000	1.000	186
	0.000	0.016	0.000	187
			•	
	•	•		
		•	•	

Data:
$$F_{ijk} = F(x_i, y_j, z_k) \ i, j, k = 1, ..., N.$$

Data: Drilling

Mineral

11.0

10.0

•

Data: Combustion

	Location			Concentration
	0.00 0.00 0.00	0.00 0.00 0.00	0.02 0.04 0.06	001 007 003
-HO-F	•	•	•	•
r¥−			:	
6				

liiscience.org

ría

Data: $(r_i cos(\Phi_j), r_i sin(\Phi_j), z_k; C_{ijk})$

Data: EEG

http://www.unige.ch/

	Location			Voltage
	6.54	4.56	5.64	0.033
~	9.14	-3.14	1.38	0.086
	9.45	2.12	1.19	0.310
b	•	•	•	•
00000	•	•	•	•
	•	•	•	· ·

Data:
$$(x_i, y_i, z_i; V_{ij}), \quad i = 1, ..., N,$$

 $j = 1, ..., 6.$

Data: rainfall

	Longitude	Latitude	Rainfall
	43 19' 34" 21 35' 59"	23 36' 13" 45 09' 36"	14.6 23.6
	43 19' 34"	23 36' 13"	14.6
Ser.	-	-	•
	•	•	•
17-	•	•	•

http://www.crh.noaa.gov/

nría

Data: $(x_i, y_i, z_i) = (sin\Phi_i cos\Psi_i, sin\Phi_i sin\Psi_i, cos\Phi_i)$

Data taxonomy

Position:

- dimension
- discretisation

Nature:

- scalar
- vector
- tensor

Localization of data

- Dimension:
 - 1, 2, 3 dimensions + time
- Simple domain or complex topology
- Regular/Irregular discretization

http://vtk.org

Nature of data

Scalar:

• temperature, pressure, concentration...

Vector:

• Magnetic field, velocity...

Tensor:

• Mechanical stress, functional MRI

wwwcg.in.tum.de

www.tnw.tudelft.nl

Technique: Isovalue surfaces

www.hlrs.de

Ínría

Technique: Flow lines (ribbons/tubes)

Technique: Direct Volume Rendering

[Grosset &al,PVis13]

Transversal issue: Large data size

Does the data fit into:

- GPU
- RAM
- Local disk
- NFS

=> Multiresolution visualization methods

HSC 19, 15th May 2017, Visual

Free libraries and software

VisIT Visualization Tool https://wci.llnl.gov/codes/visit/

Journal and Conferences

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

A publication of the IEEE Computer Society

Welcome

Important Dates Surveys

Tutorials/Panels

Registration and Travel

IEEE VIS 2017 is the premier forum for advances in visualization for academia, government, and industry. This week-long event brings together researchers and practitioners with a shared interest in visualization solutions. IEEE VIS 2017 is now soliciting novel research contributions and innovative applications in all areas of visualization as captured by the three main conferences:

(Become One)

Visual Perception basic facts

Motivation

http://nivea.psycho.univ-paris5.fr/

Visual Perception

Perception is the organization, identification and interpretation of sensory information in order to represent and understand the environment.

« Perceiving is identify something somewhere, and this need for localized identification persists even when we look at some abstract configurations, for which we cannot build on any previous experience » (Gombrich, in *Art and Illusion*)

Reverspective http://www.patrickhughes.co.uk/

Reverspective

http://www.patrickhughes.co.uk/

A priori in Visual perception

http://michaelbach.de/

A priori in Visual perception

[Stone&al.,2009]

Basic Vision, pp. 226

Visual Acuity

Contrast: 120 millions rodes

Color: 5 millions cones

Saccadic eye movements

I. E. Repin, Un visiteur inattendu (1884)

Yarbus, Eye movement and Vision, 1967, fig. 109

Gaze guided visualization

Depth perception

In Direct Volume Rendering

Depth perception

wikipedia

Two binocular cues

wikipedia

Direct Volume Rendering

Direct Volume Rendering

radiographics.rsna.org

nría

Transparency perception

[Metelli, 1974]

Transparency perception

 $p=(1-\alpha) t + \alpha a$ $q=(1-\alpha) t + \alpha b$

[Metelli, 1974]

Transparency perception

Evaluation of Depth Perception in DVR Static experiment

Boucheny, Bonneau & al, APGV 2007

Static experiment results

Poor global performances

Boucheny, Bonneau & al, APGV 2007

Bias for Large tube in front

SUBJECTS CORRECT ANSWERS FOR BRIGHT VS DARK LARGE CYLINDER

Inría