INSTITUT LAUE LANGEVIN

Neutron Instrumentation

Eddy Lelièvre-Berna

Service for Advanced Neutron Environment (SANE) — lelievre@ill.eu

X-Ray & Neutron Science — 4 Sept. 2023 — E. Lelièvre-Berna

Neutron instrumentation

- What do we measure and need?
- Neutron guides & shielding
- Measuring techniques
- Sample environments
- Neutrons detectors
- Data acquisition system

Neutron instrumentation

- What do we measure and need?
- Neutron guides & shielding
- Measuring techniques
- Sample environments
- Neutrons detectors
- Data acquisition system

What do we measure and need? Elastic scattering: $\|\vec{k}_i\| = \|\vec{k}_f\|$

Intensity vs wave-vector transfer

 $\overrightarrow{Q} = \overrightarrow{k}_f - \overrightarrow{k}_i$

What do we measure and need? Inelastic scattering: $\|\vec{k}_i\| \neq \|\vec{k}_f\|$

$$\overrightarrow{Q} = \overrightarrow{k}_f - \overrightarrow{k}$$

X-Ray & Neutron Science — 4 Sept. 2023 — E. Lelièvre-Berna

Intensity vs wave-vector & energy transfer

 $k_i, \hbar\omega = E_f - E_i$

What do we measure and need?

Polarised neutron scattering

In general, the polarisation of a neutron beam will change both in magnitude and direction upon scattering from a magnetic material.

What do we measure and need? Polarised neutron scattering

- We measure an intensity:

$$\mathbf{P}_{i,j} = \frac{P_i \mathbb{P}_{i,j} + P_j}{\|\vec{P}_f\|}$$

$I(\vec{Q}, \vec{P}_i, \hbar\omega)$ where $\vec{Q} = \vec{k}_f - \vec{k}_i, \ \hbar\omega = E_f - E_i$

• and components of the scattered polarisation \overrightarrow{P}_{f} for each direction of the incident polarisation \overrightarrow{P}_{i} :

 $\frac{j}{j}$ with $(i, j) \in \{x, y, z\}$

Neutron instrumentation

- What do we measure and need?
- Neutron guides & shielding
- Measuring techniques
- Sample environments
- Neutrons detectors
- Data acquisition system

Guides Constructibility

- a real instrument
 has to fit in a real
 space, and will never
 be large enough.
- thermal, cold, hot neutrons?
- wide-band, monochromatic?
- beam size, divergence, resolution?

Neutron guides H1-H2 major upgrade in 2022

- A guide is made up of sections joined together
- Glass is cheap and sufficiently thick to hold the vacuum
- Curved guides eliminate fast neutrons ($R \approx \text{km}$)
- Guides can split, focus, collimate, polarise...

H1-H2 beamtube guide hall

FOR SOCIETY

Neutron guides

https://www.ill.eu/users/instruments/modernisation-programmes/ill2023

X-Ray & Neutron Science — 4 Sept. 2023 — E. Lelièvre-Berna

Neutron guides H5 major upgrade in 2014

- A guide is made up of sections joined together
- Glass is cheap and sufficiently thick to hold the vacuum
- Curved guides eliminate fast neutrons ($R \approx \text{km}$)
- Guides can split, focus, collimate, polarise...

Neutron guides H5 major upgrade in 2014

Neutron guides

X-Ray & Neutron Science — 4 Sept. 2023 — E. Lelièvre-Berna

Neutron guides

X-Ray & Neutron Science — 4 Sept. 2023 — E. Lelièvre-Berna

15

Neutron guides supermirrors produced at the ILL

3300 double-sided m=3.2 Co/Ti/Gd mirrors for covering 90°

Neutron guides of the ultra-cold neutron source

X-Ray & Neutron Science — 4 Sept. 2023 — E. Lelièvre-Berna

Shield against neutrons & gammas

- Hydrogeneous
- concrete, wax, polyethylene
- Boron, ⁶Li, Cd, Gd/GdO
- Lead, Iron (soft steel)
- Number of collected neutrons x30 since 2000 at ILL. The shielding efficiency must continuously be improved (to save space)

Neutron guides & shielding

X-Ray & Neutron Science — 4 Sept. 2023 — E. Lelièvre-Berna

European Spallation Source 5 MW long pulse source (+2 G€)

Neutron guides & shielding

X-Ray & Neutron Science — 4 Sept. 2023 — E. Lelièvre-Berna

Neutron instrumentation

- What do we measure and need?
- Neutron guides & shielding
- Measuring techniques
- Sample environments
- Neutrons detectors
- Data acquisition system

Measuring techniques Neutronography

5 µm resolution — complementary to x-rays

X-Ray & Neutron Science — 4 Sept. 2023 — E. Lelièvre-Berna

Measuring techniques Tomography

- Neutrons spec.
- 1 µm resolution
- 1 ms images
- 1 s tomography

- Neutrons + X-ray
- 10 µm resolution

X-Ray & Neutron Science — 4 Sept. 2023 — E. Lelièvre-Berna

- Powder diffraction
- collimator, filter
- focusing monochromator
- (spin polariser)
- slits, monitor
- collimators
- detectors

Measuring techniques **Monochromators**

- Array of single crystals
- To select energy (and polarisation)
- Cu, Si, HOPG, Heusler, Diamond...
- Flat, focusing vertically (diff.), vertically and horizontally (spec.)
- Controlled mosaic distribution by plastic deformation of Cu crystals at high-temperature

Measuring techniques **Monochromators**

- Array of single crystals
- To select energy (and polarisation)
- Cu, Si, HOPG, Heusler, Diamond...
- Flat, focusing vertically (diff.), vertically and horizontally (spec.)
- Controlled mosaic distribution by plastic deformation of Cu crystals at high-temperature

- Crystal diffraction
- (polarising) monochromator
- harmonic filters
- monitor, (spin flipper)
- collimation, slits, (cradle)
- (polarimeter & spin analyser)
- single or PSD detector

 Mezei's flipper: sensitive to environmental magnetic fields, neutron wavelength dependent, for cold and thermal neutrons only

b X $\boldsymbol{B}_R = \boldsymbol{B}_G + \boldsymbol{B}_C$ $\langle \pmb{P}_{\mathsf{out}}
angle$ $\langle P_{\rm out} \rangle$ $\langle \pmb{P}_{\mathsf{in}}
angle$ Y

efficiency down to 0.3 Å, operates in up to 400 G stray fields

X-Ray & Neutron Science — 4 Sept. 2023 — E. Lelièvre-Berna

Cryoflipper (Tasset's flipper): neutron wavelength independent, 99.9%

0.1 - 1 mm	thick superconducting N	Nb foil	

the effective field and rotates adiabatically.

• RF flipper: in the rotating frame of the neutron, the polarisation follows

the effective field and rotates adiabatically.

X-Ray & Neutron Science — 4 Sept. 2023 — E. Lelièvre-Berna

• RF flipper: in the rotating frame of the neutron, the polarisation follows

λ independent

no material in the beam

Measuring techniques Spin polariser & flipper

• ³He spin filters are characterised by their opacity:

$$\mathcal{D} = N \ell \sigma_{\text{H}}$$

 $\simeq 0.0732 \ p[\text{bar}] \ \ell[\text{cm}] \ \lambda[\text{Å}]$

The total transmission and polarising efficiency are:

$$T_n \propto \cosh\left(\mathcal{O}P_{^3\mathrm{He}}\right)$$

$$P_{\epsilon} = \tanh(\mathcal{O}P_{^{3}\mathrm{He}})$$

polarised ³He filling station Tyrex²

Measuring techniques Spin polariser & flipper

• ³He spin filters are characterised by their opacity:

$$\mathcal{D} = N \ell \sigma_{\text{H}}$$

 $\simeq 0.0732 \ p[\text{bar}] \ \ell[\text{cm}] \ \lambda[\text{Å}]$

 The total transmission and polarising efficiency are:

$$T_n \propto \cosh\left(\mathcal{O}P_{^3\mathrm{He}}\right)$$

$$P_{\epsilon} = \tanh(\mathcal{O}P_{^{3}\mathrm{He}})$$

Banna-shaped Quartz cell

Quartz cell

Si-windowed cell

magneto static cavity

Measuring techniques Spin polariser & flipper

• ³He spin filters are characterised by their opacity:

$$\mathcal{D} = N \ell \sigma_{\text{H}}$$

 $\simeq 0.0732 \ p[\text{bar}] \ \ell[\text{cm}] \ \lambda[\text{Å}]$

The total transmission and polarising efficiency are:

$$T_n \propto \cosh\left(\mathcal{O}P_{^3\mathrm{He}}\right)$$

$$P_{\epsilon} = \tanh(\mathcal{O}P_{^{3}\mathrm{He}})$$

Measuring techniques Manipulation of the beam polarisation (polarimeter)

- Cryopad:
 - Cryogenic Polarisation Analysis Device
- sample in zero field
- manipulates the beam polarisation vector before and after the sample

Measuring techniques Manipulation of the beam polarisation

• Cryopad:

<u>Cryogenic</u> **Polarisation** <u>A</u>nalysis Device

- sample in zero field
- manipulates the beam polarisation vector before and after the sample

- Small angle neutron scattering (SANS)
- collimators, slits, detector(s) in evacuated chamber

- velocity selector, (polariser + flipper), filter, (choppers in TOF mode),

Measuring techniques Velocity selectors

- Large $\Delta\lambda/\lambda$: typically 10 to 12% fwhm resolution
- High transmission: from 75 to 95%
- Rotation frequency: from 1 to +5 kHz
- Multi-disc or multi-blade

Measuring techniques Specular & off-specular scattering

Horizontal or vertical reflectometry

monochromator or choppers (TOF mode), (polariser + flipper), monitor, collimator, slits, detector in evacuated chamber

X-Ray & Neutron Science — 4 Sept. 2023 — E. Lelièvre-Berna

- Three-axis spectroscopy
- collimator, (filter, velocity selector)
- (polarising) monochromator
- slits before (and after) sample
- (spin) analyser
- single or PSD detector
- very low neutron background

- "Two-axis" spectroscopy
- collimator, (filter, velocity selector)
- (polarising) monochromator
- slits before (and after) sample
- (spin) analyser
- single or PSD detector
- very low neutron background

"Two-axis" spectroscopy

- collimator, (filter, velocity selector) —
- (polarising) monochromator
- slits before (and after) sample
- (spin) analyser
- single or PSD detector
- very low neutron background

- Time of flight spectroscopy
- choppers, monitor, collimator
- (monochromator, filter, choppers)

X-Ray & Neutron Science — 4 Sept. 2023 — E. Lelièvre-Berna

Choppers - Time of flight technique

Measuring techniques Choppers - Time of flight technique

- T0 choppers to stop fast neutrons (pulsed sources)
- Bandwidth-limiting choppers (prevent frame overlap)
- *E*₀ or Fermi choppers to transmit a very narrow bandwidth of neutrons (e.g. to define E_i)

T₀ single-blade rotor

assembled T₀ chopper unit EUROPEAN NEUTRON SOURCE ТНЕ

Measuring techniques Choppers - Time of flight technique

- T0 choppers to stop fast neutrons (pulsed sources)
- Bandwidth-limiting choppers (prevent frame overlap)
- *E*₀ or Fermi choppers to transmit a very narrow bandwidth of neutrons (e.g. to define E_i)

IN5 chopper disc

IN5 chopper housings

EUROPEAN NEUTRON SOURCE ТНЕ

- Backscattering
- velocity selector
- background and phase space transformation choppers
- Doppler monochromator
- analysers
- position sensitive detector (PSD)

IN16B HF

- Neutron spin echo
- velocity selector
- polarising supermirrors
- precession solenoids
- π and $\pi/2$ flippers _
- spin analyser, PSD detector
- choppers for TOF mode

-	
-	1

- Neutron spin echo
- velocity selector
- polarising supermirrors
- precession solenoids
- π and $\pi/2$ flippers
- spin analyser, PSD detector
- choppers for TOF mode

