

11TH INTERNATIONAL WORKSHOP ON RADIATION SAFETY AT SYNCHROTRON RADIATION SOURCES (RADSYNCH23)

Predicting 3D Radioactivity Distribution in Large-scale Structures Using Machine Learning Techniques

UkJae Lee^a, Phillip Chang^b, Nam-Suk Jung^a, Hee-Seock Lee^a

^aPohang Accelerator Laboratory, Pohang, Gyeongbuk, Republic of Korea ^bUlsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea

UkJae Lee

dldnrwp@postech.ac.kr

Outlines

Introductions

Methods

- Convolutional Neural Network (CNN)

- Data generation for machine learning

Results

- Comparison of machine learning model

• Future works

Conclusions

Introductions

- PAL 포항가속기연구소 POHANG ACCELERATOR LABORATORY
- The radioactive wastes are generated during decommissioning of nuclear facilities
- The amount of concrete block is dominant, and its activated part is small.
- Classification and disposal of radioactive wastes are important.
 → direct related with the cost of decommissioning

Introductions

• The concept of distribution assessment with machine learning

Introductions

Convolutional Neural Network (CNN)

Learning with keeping spatial information of image

- > Maintaining the shape of the input/output data of each layer
- Effective recognition of features with adjacent images while maintaining spatial information of images Image feature extraction and learning with multiple filters
- > Pooling layer that collects and enhances the features of the extracted image
- Since the filter is used as a shared parameter, the learning parameter is very small compared to general artificial neural networks.

Image

Convolved Feature

• Learning data generation for feasibility test

- < Concrete structure and detector with using FLUKA 4-1.1>
- > Length of a side : 50 cm
- Material : concrete
- The number of detector: 16per side surface (total 64)
- Radius of detector: 2.5 cm
- Height of detector: 5 cm

<Internal distribution of radionuclides in concrete structure>

$$f(x,y) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{(x,y)-\mu}{\sigma}\right)^2}$$

<Surface distribution: Gaussian distribution>

< Co-60 energy spectrum (1.17, 1.33 MeV))>

< The examples of source distribution; one source (up), two sources (down), XY view (left), YZ view (right)>

Radsynch23, ESRF, 30 May - 2 June 2023

• Learning circumstance (GPU) and Epoch

- > Machine learning is conducted on GPU based PC
- > Two RTX 3090 launched PC : 20,992 cores.
- > The data for machine learning generated by simulation is divided by 8 (training) : 1 (validation) : 1 (test)

<Loss change derived by increasing the number of epochs using machine learning data (left) and loss change derived by increasing the number of epochs using validation data (right)>

< The method for checking the result: section by each axis>

• Assessment result with 1 source distribution (MSE: 2.33E-06)

• Assessment result with 2 source distribution (MSE: 6.84E-06)

Radsynch23, ESRF, 30 May - 2 June 2023

• Machine learning data

< Concrete structure and detector with using FLUKA 4-1.1>

- > Length of a side : 100 cm
- Material : concrete
- The number of detector: 16
 per side surface (total 64)
- Radius of detector: 2.5 cm
- Height of detector: 5 cm

<Surface distribution: Gaussian distribution>

• Whole spectrum data directly (passthrough)

• Summing whole spectrum data (simple sum)

• Learning the shape of spectrum (CNN 1D)

• Learning the relation between each side detector (CNN 2D)

100

80

Z AO

60

80

60

- Overall distribution check
 - Random case #2

CNN 1D

100

80

60

- The quantitively analysis for each machine learning result (CNN 1D, CNN 2D, passthrough, simple sum).
- 5425 data set for constructing evaluation model, 603 data set for evaluating result.
- Evaluation factor for machine learning result.
 - The location of maximum point of distribution
 - Intensity of maximum point
 - Sigma value for Gaussian distribution

- Maximum point of distribution
 - Distance between position distance of label data and prediction data.

<Average distance and standard deviation between label data and prediction data>

	Average [cm]	Std.
CNN 1D	5.86	7.26
CNN 2D	21.46	23.47
Simple S	6.38	3.64
P.T.	2.72	1.94

• Sigma value of Gaussian distribution

<Slope and R² value for linear fit curve>

	Slope	R ²
CNN 1D	0.8461	0.2803
CNN 2D	0.1961	0.0293
Simple S	0.4704	0.1292
P.T.	0.9881	0.6226

• Intensity of maximum point

<Slope and R² value for linear fit curve>

	Slope	R ²
CNN 1D	0.4235	0.1524
CNN 2D	0.2381	0.0193
Simple S	0.3663	0.1971
P.T.	0.7302	0.6121

• Transformer method

• Intensity of maximum point with transformer model

- Passthrough

- \rightarrow position of maximum point
- \rightarrow sigma value for distribution

- Transformer

 \rightarrow intensity of maximum point

Prediction result with distance between center and maximum point of distribution

• Learning the shape of spectrum (CNN 1D)

Radsynch23, ESRF, 30 May - 2 June 2023

Conclusions

- The prediction of radioactivity distribution using machine learning is suggested.
- The intensity and distribution can be estimated within 10% relative difference.
- The real measured data will be applied using real concrete structure.

Thank You for Your Attention!

