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• The radioactive wastes are generated during decommissioning of nuclear facilities

• The amount of concrete block is dominant, and its activated part is small.

• Classification and disposal of radioactive wastes are important.
 direct related with the cost of decommissioning

IntroductionIntroductions
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• The concept of distribution assessment with machine learning
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• Convolutional Neural Network (CNN)

 Maintaining the shape of the input/output data of each layer 

 Effective recognition of features with adjacent images while maintaining 

spatial information of images Image feature extraction and learning with 

multiple filters 

 Pooling layer that collects and enhances the features of the extracted image

 Since the filter is used as a shared parameter, the learning parameter is very 

small compared to general artificial neural networks.

Learning with keeping 
spatial information of 

image
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• Learning data generation for feasibility test

 Length of a side : 50 cm

 Material : concrete

 The number of detector: 16 

per side surface (total 64)

 Radius of detector: 2.5 cm

 Height of detector: 5 cm

< Concrete structure and detector  

with using FLUKA 4-1.1>

< The examples of source distribution; one source (up), 

two sources (down), XY view (left), YZ view (right)>

< Co-60 energy spectrum (1.17, 1.33 MeV) )>

<Internal distribution of radionuclides in concrete structure>

<Surface distribution: Gaussian distribution>
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• Learning circumstance (GPU) and Epoch

 Machine learning is conducted on GPU based PC

 Two RTX 3090 launched PC : 20,992 cores.

 The data for machine learning generated by simulation is divided by 8 (training) : 1 (validation) : 1 (test)

<Loss change derived by increasing the number of epochs using machine learning data (left) 

and loss change derived by increasing the number of epochs using validation data (right)>
< The method for checking the result:

section by each axis>
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• Assessment result with 1 source distribution (MSE: 2.33E-06) 
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• Assessment result with 2 source distribution (MSE: 6.84E-06) 
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• Machine learning data

 Length of a side : 100 cm

 Material : concrete

 The number of detector: 16 

per side surface (total 64)

 Radius of detector: 2.5 cm

 Height of detector: 5 cm

< Concrete structure and detector  with using FLUKA 4-1.1>

<Internal distribution of radionuclides in 

concrete structure>

<Surface distribution: Gaussian distribution>

𝑓𝑓 𝑥𝑥,𝑦𝑦 =
1

𝜎𝜎 2𝜋𝜋
𝑒𝑒−

1
2

𝑥𝑥,𝑦𝑦 −𝜇𝜇
σ

2

Radsynch23, ESRF, 30 May - 2 June 2023



64x(1024,)

(4, 4, 4, 1024)

(100, 100, 100, 1)

Reshape CNN3D + Trilinear interpolation Backbone
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• Whole spectrum data directly (passthrough)
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64x(1024,)

(4, 4, 4, 1)

(100, 100, 100, 1)

Reshape

CNN3D + Trilinear interpolation Backbone

(1024, 64) (1, 64)

Methods
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• Summing whole spectrum data (simple sum)
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64x(1024,)

(4, 4, 4, 256)

(100, 100, 100, 1)
Swap axes & 
Reshape

CNN3D + Trilinear 
interpolation Backbone

Average Pooling

(256, 64)
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• Learning the shape of spectrum (CNN 1D)
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64x(1024,)

4x(4, 4, 1024)
4x(3, 3, 4) 4x(2, 2, 16)
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• Learning the relation between each side detector (CNN 2D)
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Label distribution 

CNN 1D CNN 2D Simple sum passthrough

Results
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• Overall distribution check

- Random case #1
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• Overall distribution check Label distribution

CNN 1D CNN 2D Simple sum passthrough

Results
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- Random case #2
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- The quantitively analysis for each machine learning result (CNN 1D, CNN 2D, passthrough, simple sum).

- 5425 data set for constructing evaluation model, 603 data set for evaluating result.

- Evaluation factor for machine learning result.

• The location of maximum point of distribution

• Intensity of maximum point

• Sigma value for Gaussian distribution

Results
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Average [cm] Std.

CNN 1D 5.86 7.26

CNN 2D 21.46 23.47

Simple S 6.38 3.64

P.T. 2.72 1.94

Results

19

• Maximum point of distribution

- Distance between position distance of label data and prediction data. 

<Average distance and standard deviation 
between label data and prediction data>
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Slope R2

CNN 1D 0.8461 0.2803

CNN 2D 0.1961 0.0293

Simple S 0.4704 0.1292

P.T. 0.9881 0.6226

Results
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• Sigma value of Gaussian distribution

<Slope and R2 value for linear fit curve>
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• Intensity of maximum point

Slope R2

CNN 1D 0.4235 0.1524

CNN 2D 0.2381 0.0193

Simple S 0.3663 0.1971

P.T. 0.7302 0.6121

Results
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<Slope and R2 value for linear fit curve>
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64x(1024,) (64, 512,)

(64, 512,)

Position embedding

Spectrum embedding

+
(64, 512,)

Add

(1, 512,)

Center position embedding*

Concatenate

(1, 3,)
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(65, 512,) Dense layer

Vector of center position

(1, 512,)

(1, 1) output
= intensity

• Transformer method



Results
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• Intensity of maximum point with transformer model

y = 0.991x + 0.2473
R² = 0.9912

- Passthrough

 position of maximum point

 sigma value for distribution

- Transformer

 intensity of maximum point
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• Prediction result with distance between center and maximum point of distribution
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• Learning the shape of spectrum (CNN 1D)
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Label Prediction

Label Prediction Label Prediction

Label Prediction
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Conclusions
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- The prediction of radioactivity distribution using machine learning is suggested.

- The intensity and distribution can be estimated within 10% relative difference.

- The real measured data will be applied using real concrete structure.



Thank You for Your Attention! 
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