U.5. DEPARTMENT OF

Office of Science

BERKELEY
LAB

L)

rrrrrr

"'-r “: o 'I.--—. - S %
o F = | 1k
-.-.- _::? E. | .
O f sl o “W'MMW
- i ; % e, 7
3 - = r = i
o R e
ALS-U ) — o '
ADVANCED LIGHT SOURCE e ]
= N P il - e o

., Radiation shielding calculations.
_~for the ALS upgra,glé project -

Stefanla Trovatl :a;

lr,

‘“*Ied Liang

i, mPhysms, Radiation Protection Group, DESY (G;ynany}’ |

Wu
. | |ﬁlﬂdﬂ [T ——) “I..Hilm:
| -

RADSYNCH23 S o S T o]yl o S gt‘!"” S
- ESRF, May 30th 2023 W

Grenoble,
2023



Outline

e  Overview of current and upgraded ALS

* ALS-U radiation hazards

* Shielding policy

 Accelerator Shielding: existing, retrofit and new shielding
 Shielding calculations methods

*  Overview of shielding requirements
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Overview of the ALS facility

. Built between 1987-1993, it incorporates the dome of the Lawrence’s 184-inch
cyclotron

Small facility, constrained by hills and other buildings it cannot be expanded
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Overview of the ALS facility

e  Accelerators: Linac (50 MeV), booster and storage ring (1.9 GeV), 500 mA
. 46 beamlines, including infra-red

. Mainly developed for soft X-ray science, it has added, over time, hard X-ray beamlines
—  storage ring circumference ~197 m

—  storage ring tunnel width varies between 4 to 8 meters (inner to ratchet wall)

—  experimental floor space is limited, no first-optics enclosures

Quantum Materials (MAESTRO) 7.0.2 7.3.1  High-Pressure In Situ Soft X-Ray Spectroscopy
Coherent Scattering and Microscopy [COSMIC) 7.0.1 7.3.3  SAMS/WANS/GISAXS
Calibration, Optics Testing, Spectroscopy 6.3.2 8.0.1 Surface and Materials Science (RIXS)
Magnetic Spectroscopy / Materials Science 6.3.1 821 Macromolecular Crystallography (BCSB/HHMI)
Full-Field Transmission Soft X-Ray Microscopy 6.1.2 8.22 Macromolecular Crystallography (BCSB/HHMI)
Energy, Catalytic, and Chemical Science (AMBER) 6.0.1
Double-Dispersion RIXS [QERLIN) 4.0.2
Polymer STXM 5.3.2.2
STXM 5321
Research and Development (X-Ray Footprinting) 5.3.1
Macromolecular Crystallography (BCSB) 5.0.3
Macromeolecular Crystallography (BCSB) 5.0.2
Macromolecular Crystallography (BCSB) 5.0.1
Macromolecular Crystallography (MBC) 4.2.2
High-Resalution Spectroscopy (MERLIN) 4.0.3
Magnetic Spectroscopy and Scattering 4.0.2
General X-Ray Testing Station 3.3.2
X-Ray Footprinting 3.3.1
LIGA 321
Mational Center for X-Ray Tomography 2.1
Macromolecular Crystallography (GEMINI 2.0.1

8.3.1 Macromalecular Crystallography (TomAlberTron)
832 Tomography (micro-CT)

9.0 Chemical Transformations

9.3.1 Tender X-Ray Spectroscopy

932 Ambient-Pressure Soft X-Ray Spectroscopy
10.0.1 ARPES, SpinARPES

10.3.1 X-Ray Flucrescence Microprobe (XFM)

10,32 X-Ray Fluorescence Microprobe (XFM)

11.0.1 PEEM3/Resonant Soft X-Ray Scattering

11.0.2 Molecular Environmental Science

11.3.1 Tender Nano-Tomography

11.3.2 EUV Lithography Photomask Imaging (SHARP)
12,01 EUV Lithography Nanopatterning (MET/METS)
12.0.2 Coherent X-Ray Scattering

12,21 Small-Molecule Crystallography

12.2.2 Diffraction Under Mon-Ambient Conditions
12.3.1 SIBYLS=MX and SAXS

1232 Microditfraction

Bearmines 4

Infrared Manospectroscopy and Imaging 2.4
IR Spectromicroscopy 1.4




ALS = ALS-U: accelerators

Upgrade goals: reduced ¢, and increased brightness

Addition of accumulator, new storage ring, new transfer lines

New SR: from 3-bend arc to 9-bend achromat lattice

Parameter Current ALS Future ALS
Electron energy 1.9GeV 20GeV
Beam current 500 mA 500 mA
Horizontal emittance 2,000 pm rad <75 pm rad
Vertical emittance 30 pm rad <75 pm rad
Beam size at insertion-device center (o,/0) 251/9 uym <14/ <14 ym
Beam size at bend source points (o,/c,) 40/ 7 ym <717 <10 ym
Energy spread 9.7 x 10—4% ~1x 1{]—3""?‘E
Typical bunch length (fwhm) 60-70 ps 100-120 ps
Circumference 196.8 m ~196.5m
Number of main bend magnets per sector 3 9
Performance Measure Threshold
Storage ring energy >19GeV
Beam current >25 mA
Horizontal emittance <150 pm
rad
Calculated brightness at 1 keV >2.0x 10"
(7
t‘C’)‘\ ALS-U Number of feature MBA 2

beamlines installed

Radiation shielding

Existing ALS ring

and LINAC

0
X [um]

New ALS storage ring

0
X [um]




ALS = ALS-U: beamlines

e 4 new ID beamlines, 2 of which will have 2 new insertion devices:

— 1full length (4m) in-vacuum undulator (IVID) for the Tender beamline, B, =1.3T, A =19 mm,
gap =4.3 mm

— 1 full length (4m) Apple Il type undulator (EPU) for the FLEXON beamline, B+ =0.985T (planar)
 Bend magnets fields all decrease and cryo-magnets are replaced with permanent magnets

* All bend-magnet sources move = realignment of 24 beamlines

ALS-now
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ALS-U timeline

Mission Need Conceptual Design Preliminary Design Final Design . Late Finish
(CD-0) (CD-1) (CD-2) (CD-3) (CD-4)
4/2021 Fall/2022 9/2029

9/2016 9/2‘018

12 months & months |

29 months o?—

I f | i Today E i | float after earl
Approval for Accu.mu ator Ring Installation ': i Installatid|n Early Finish Fricy y
Production phase 1 E i phase 2| (CD-4EF) 1
< >4 : .
(CD-3a) :8 mo. : Spring/2027
12/2019 — |

‘accumulator ring

2-4 weeks of fully dedicated time,  comrihissioning

then interleaved with ALS operations: shielding '

e '9mo |
for accumulator ring in place :

storage riing removal, shielding retrofit,
all Pb panels, roof blocks and local installation of:the new storage ring
shielding installed by end of DT |

SOk _____ RN VS

' 9 months into dark time: storage
ring commissioning

initial operation at > 25mA

no users, only bl staff, beamlines brought
online in a staged manner

RADSYNCH23 - ESRF, Grenoble, 2023 7

il BERKELEY LAB 595‘ ALS-U



Summary of Radiation Hazards

«  Radiation hazards do not change in type, only in severity

_E’“ —  5x more losses due to reduced beam lifetime (0.5 h from 4 h)
§ —  increased swap-out incident charge: 1 nC = 30 nC
g —  electron beam power density increases
- — ARis an additional source, placed on inner wall and close to ceiling
—  additional transfer lines
g —  improved injection efficiency into the storage ring: 50% = 99.8%
g —  collimators will intercept 95% of losses reducing losses elsewhere to < 5%
é v — significantly lower B-fields at bend beamlines will result in decreased radiation
g — SR gas bremsstrahlung comparable to or less than present one, after torag ig
5 commissioning due to neg coating of all vacuum chambers
g —  at the existing ID beamlines B-fields will be reduced by increasing gaps due to

thrrmal load and to keep same shielding as much as possible

P i . i . i 3
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Beam losses

. Injector chain: loss fractions and patterns remain unchanged,

but 5x higher repetition rate in swap out mode

10" 100 —"_,, pr—
. & | secl ycollimator .
Accumulator ring: | st R "
Té TENDER  LEDA : 3:3 Té . :
. 0.017 nC/s lost mainly at 2 collimators £ 10 wipa0 N xcolimmiorsy/ ™
— FLEXON —
= [ ) ® | sec? = L
o 5 casmc s " m | secd & .
® . o injectiony g ® injection a Hard & | sect [ a
Storage ring: IO L e :
4] 4 a . hd QZZ . @ injection a
. 0.5 h lifetime (Touschek + gas) = 0.18 nC/s lost : nhEe Be| = 2 TEPER it
H i 8 FLEXON
< ] n u 2 injectiof
. swap-out losses: 0.2% of 30 nC/30s £ 10 a3 ., =RLEE R I I
¢ « ! i s A o4 8 :IVIDBD =g . l :garr:‘ i
. . . A | a = ends
. fill-mode losses: 2.16 nC in 15 minutes L, L 1 cosMee ‘. i
-4 | “ . . * . = * 1yt : ..‘ &, ! L =
-1 -2 2 1 Ll 4 10 12 11 -1 -2 0 2 1 A # 10 1
. Abnormal events: i "
. loss of injected beam in a photon beamline (30 nC) A lator Ri
- , , ccumulator Ring
. loss of full stored and injected beam away from collimators (330 nC in SR,
30 nc in AR) P horizon.tal collimator .I secl
n sec2
. . . TE . - 5eCC
. reduced collimators efficiency (from 95% to 50%) E ATHo Collirietor o o
E 1071 4 W sech
. increased gas pressure (MPS trips at 5 nT in straight sections) = oy e
BTAsgptum o | 1|
g 10 . ® secld
Parameter ALS ALS-U 2 ‘ orse QDZ‘ m et
Electron energy 1.9GeV 2.0GeV g 15 SHFI%H QFA1 i SHF2
Injection efficiency ~50 % >99 % é i i \ '
Stored beam losses 0.5 x 102 electrons/hour 2 % 10'2 electrons/hour = g ° 4
f
" \' Pa Top-off injection shot 1nC 30nC o . fEND1é- . ]
""" il BerKELEY LAB | 9 ALS-U s (m)
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Shielding policy

. A major facility modification drives re-evaluation of the existing policy (1 uSv/h, 0.4 mSv/event)

. New shielding policy developed to stay below DOE limits and ALARA, using dosimetry data collected over the
years

ALS-U, post commissioning phase goal: keep controlled area classification and remove radiation areas with
shielding retrofit

* Shielding design goal
— 5 uSv/h with an ALARA goal of 0.5 uSv/h on the experimental floor
— 1 mSv/event for incident scenarios
. Commissioning phase: all staff classified as radiation worker with dosimeter

. When dosimetry data accumulated over time reach a steady state, if exposures are low enough, worker
classification and badging will be re-assessed

(Za - 10
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Shielding challenges

 ALS-Uis not a green field facility and there is
no possibility to expand or rebuild

e Shielding walls (material and thickness) not
standard for all sectors

e Several simulations needed for different
layouts and radiation sources

&5 ALs-U

DING 10

uuuuu

i
PESENTLY PLANNED,

Inner walls: concrete 46
cm thick apart from
injection area where 100-

110 cm thick

L
127 THIS AREA
AT PRESENTLY PLANNID.

RADSYNCH23 - ESRF, Grenoble, 2023
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Front-end and wall plugs at beamlines ports

At beamline ports through the shield wall, concrete is replaced with Pb and
polyethylene

. Front-ends have Pb belly bands that vary from 7.5 to 12.5 cm, local shielding to shadow
the storage rings from the beamline ports: mainly Pb, some W

. Shielding layout varies front-end by front-end, depending on installed equipment as the
space is very limited

. Validation of present shielding installation for ALS-U operation

ek belly band’
haSg:be walls

Shield wall

3 inches of lead
behind big steel cover

RADSYNCH23 - ESRF, Grenoble, 2023
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Storage Ring Tunnel: ALARA shielding retrofit

. ALS-U will retrofit the existing shielding within the scope of the Seismic Retrofit required by the new seismic code

. Proposal to add Pb/Steel panels to the ratchet walls where missing

ap N asiwe A i
oo — N LIFT DGR @

10 cm Pb
5cm Pb
cm Pb

Selsmlc bracmg
Bl

SRAC

ALS-U

s ¢
are concrete only at most sectors

)
\\ NFT“NI
A

SHIELD | NG-BALANCE OF RING EXTRA LEAD

all transition walls: 10 cm Pb ‘
injection sectors lateral walls: 7.5 cm Pb l

-~ 5 IDE wALLS: NO EAI] AT oM WALLS
e ATamt Uk, 1* LAl START UP. LEAD OM SIDE
ThansiT QN.\"J.IJ J FLOCH AND TRARS (TICN WALLS .

10 CEILING PLUS 3" ¥ 9.2° SIDE WALLS

1210 \ BAKND AT BEAM [ENTER LINE. 2% LEAD FLDOR TO CEILING
LIFT ODR TRANSITION WALLS

. -~ &' FLOOR T CEILING
@ 3 \ 3t x 8,30 BAND AT
SUPER PERIID 5TMMETRY PONT BEAN CENTER LINE

EENTER OF STRAGHT SECTEN

ROOF BLOCKS
12 THIS ARDA

A% PRESENTLY PLANMED.
WOULD LIKE 18° BLOCKS,

I
f

[} |
PRiAY Sl

]MN

= Sty i
- 1} 113 PLACES) |
Faass
/ =

no changes to concrete
thickness

2
CH23,4ESRF, Grenoble, 2023
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Storage ring shielding: roof blocks

. In the seismic evaluation also thicker roof blocks have been considered, with the plan to increase 26 blocks: 60 cm

thick (from the current 30 cm - 45 cm), all other blocks will remain 30 cm thick

. Project decision to retrofit only above injection, 60 cm was chosen for seismic analysis and retrofit planning

Dose-rate profile through the roof block

Roof blocks
LU _H#67-#2:46 cm
] #324{66: 30 cm

,,,,,

«« o Roof blocks
7| #67 - #9: 60 cm

#10 - #66: 30

/};

cm

Daose rate [mrem/hour]

1000

100

@75 deg

50% loss at 1 coll |

120 130 140 150

160 170 180

Vertical direction [cm]

RADSYNCH23 - ESRF, Grenoble, 2023
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General methodology

. Motivation: several different geometry layouts, need for a N
qguick tool to reduce number of detailed MC simulations and

adaptable in case of design changes source 3,....,n from magnets

. Method: Semi-analytical method, tailored for existing shielding

—s0 r
- MC simulations to generate source terms and attenuation lengths in pure 5 i '
materials and layered materials, for several targets and as a function of

angles in cylindrical geometry

- analytical calculations using
H,(6) d H,(0) d
TR BFN0)] RECEE) chd WVN G

H,r,d,2) = source 2 from accumulator ring AR )

Given concrete thickness:

« which sources (loss type, distance, angle)?
how much lead or steel for lateral wall?
how much lead for side wall?

how much lead/iron for local shielding?

. Objective: create look-up tables for radiation type, target type
and shielding material so that shielding thickness can be
calculated without having to run time-consuming simulations

. Realistic simulations used only for specific cases: labyrinths,
penetrations, complex layouts

Key references
(Za S. Agosteo et al. Nucl. Instr. and Meth. B 265 (2007), 581-598
5‘9‘\ ALS-U S. H. Rokni et al. Rad. Prot. Dosim. 115 (2005), 200-206 RADSYNCH23 - ESRF, Grenoble, 2023
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collimator ollimator

e  Monte Carlo simulations with FLUKA:

— 2 GeV electron beam on 3 targets representative of ALS-U loss points: collimators,
septa/ID, magnets

— spectra and doses from 0 to 90 degrees in cylindrical-symmetry geometry, bin size
optimized to decrease CPU time while keeping < 5% statistical error

— shielding represented by either pure concrete or Pb + concrete or Steel + concrete
— separated simulations to remove cross-talks from neutrons generated at O degrees

that would not contribute to 90-degrees dose
* Analytical analysis with Matlab:

— dose attenuation curve fit with double exponential formula to get H, , and
}\’1 2

— script to calculate dose where input parameters are: target type, loss
intensity, angle, shielding material, distance, dose goal (optional)

il ocrierey as | SOp ALS-U RADSYNCH23 - ESRF, Grenoble, 2023
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Dose attenuation curves: fit

Photon dose through 10 cm lead and 45 cm concrete from collimator loss

106 . . . . : " Collimator | Photon dose: 10 cm lead + 45 cm concrete
10 T T T T T
107 Bo%%0, High-energy forward L daw
o
i %, peaked bremsstrahlung R
696969969999 s final
- EEEPY — 1074 —_ _ E
RCA S 20%0000000500000s,. 1 o H, = 8.06x10" m? - mSv per e-
a Seeecp g —
E 1070 b eeed e )\1 =2.05¢cm
Qo = 0 deg o} 1 . —_ -
E b e 15deg O E H, = 1.08x10 8 m? - mSyv per e-
T 10k E'E.E 4 45deg 4 o 105 F~ s 1
I godes  x E X A, =12.99cm
S o2 Lx"a CLELEEISN g oL M
'g k- XXAA BEEEEEEEEEEE o] *‘355
9 LN EEEiEEHEIEIEn;“;. 2 Sy
S 1B [ "- e a EEEEEEEEEEEB o "**%
T v_ x*AAAAAAAAAAAAAA [s] w07 4 *%ﬁ
4 v ****X)\(X*******Q:AAAAAAAAAAAAA %
10 E hL ST g fff*x****xx*xi::é‘ééﬁﬁégé N E **’%**
N T ettt fffffff****::i %M
15 L T -3 s TN
10 Sy
10»16 I 1 1 i | 1078 L L L L L
900 910 920 930 940 950 0 10 D % 40 50 60
Shielding depth, d [cm] Thickness [cm]
Neutron dose through 10 cm lead and 45 cm concrete from collimator loss
10'6 Collimator | Neutron dose: 10 cm lead + 45 cm concrete
T T T T T T 10°° T T T T T
w0 b Not isotropic in forward | I e
N angles due to (y,n) generation . e***a«-*** e
eq 1 i A 10° P~ * E
. in lead due to high-ener o _ §
T . %000, g W - o e, H, = 1.05x10® m? - mSv per e-
s 10°F Sees, bremsstrahlung 4 B R
g eageeeeee 8 \“\f*** )\2 =7.84 cm
g 1070 F eeeeeeeeeae Odeg © § 107 S
E ) = *
= o L Seeege 15deg © E %
x 101 o "EEERagy d5deg o *x
" -.H.:a,___'ﬁg gg geg . E "‘****
€ 1072 [B2esgsssaa, L L L ] o8 gt P
c "‘=§!!!it3“ EEEHEmEmH P ****
*E o' | b --!e!!a‘sﬁ‘ﬁﬁiﬂd Emnmngﬂmmm'm::ﬂmn 3 ***‘k*
1 S A b L1 88 = e
2 LU ECTTTTVONSG: e Tea,
=REITanNRN %
101 b % 107 5
. . ”
. More isotropic at larger
10" | 1
angles . | . | . |
10-16 1 1 1 1 107
900 910 920 930 940 950 0 10 D 30 40 50 60

W

Shielding depth, d [cm]

Thickness [cm]

Photon and neutron dose through 10 cm
lead and 45 cm concrete for beam loss
on a collimator

*  Photons: two attenuation lengths A,
and A, corresponding to Pb and
concrete

. Neutrons: build-up region within
starting ~10-20 cm followed by
equilibrium attenuation length A,

RADSYNCH23 - ESRF, Grenoble, 2023 17



Examples of fitting and obtaining H and A

45° dose curves for 10 cm steel and 45 cm concrete

90° dose curves with only concrete shielding (i.e., roof)

45° dose curves for 23 cm Pb (bb+Pb panel) and 45 cm concrete

10° Collimator | 90 deg | Photon dose: 60 cm concrete 10° Collimator | Photon dose: 23 cm lead + 45 cm concrete
H, = 9.00x10-® m? - mSv per e- I o= & H, = 3.77x10" m? - mSv per e- T o
A;=9.59 cm fit Ay =2.08 cm o
) H, = 2.86x10® m2 - mSv per e- T 10710 H, = 4.85x10° m? - mSv per e- e

- 10" A, = 15.67 cm E T A, =16.46 cm

g 107" E g B

e & oo y

o L 1012 E = bts@‘“‘h’( 4

8 .l | a . '

) k i v"‘\’: ]
e
1071] L L L L L 1071:1 L L L L
0 10 20 30 40 50 60 0 10 20 30 40 50 60 70
Thickness [em] Thickness [em]
1010 Collimator | 90 deg | Neutron dose: 60 cm concrete 109 Collimator | Neutron dose: 23 cm lead + 45 cm concrete
H, = 2.77x10® m2 - mSv per e- * H, = 7.46x10-"" m? - mSv per e- Toee
)\1 =15.91cm fitt )\ = 16 12 cm e
L3 H,=1.78x108m? - mSvpere- |~~~ 12 2 '

- Feay,, Ay =19.44cm R S S

2 " ° L i 9

5 2 D)

g g 9 T *ﬂ*

£ £ LN

o 10 n o 101 o “ff*‘% n

E E 3 :

& Neutron component also g .l =) . L
fitted with double 0 mm With more Pb, (v,n) build-up’e
exponential formula for o deeper into shielding 2 fit to
only concrete =) equilibrium attenuation length

2 . . . . . 13 | | . . .
0 0 10 20 30 40 50 60 0 0 10 20 30 40 50 60 70
Thickness [cm] Thickness [cm]

Septum | 45° | Photon dose: 10 cm steel + 45 cm concrete

10°®
H; = 9.34x10" m2 - mSv per e- Toga
Ay =4.23cm —
04 H, = 1.43x107 m2 - mSv per e- fnal | |
£
10710 |
E
8 1011 F
10—12
0 60
Thickness [em]
109 Septum |45° | Neutron dose: 10 cm steel + 45 cm concrete
H, =3.28x107" m2- mSv pere- * ==
Ay =7.70cm —
% H, =3.93x108m2 - mSv pere- _c i
e 9" A, =23.15¢cm
g0 r o) .
: o
E F~
~ Q—k\‘\ * n
& = RO
. 11 S \‘\j%*ﬁk <
@ 0= = 290
g S e l
Cﬂ W‘Mq—
(v,n) build-up region also for
o fitting with double exponential ,
0 10 20 30 40 50 60

Thickness [cm]

RADSYNCH23 - ESRF, Grenoble, 2023
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Workflow

‘H, septum + Pb + CC

H, septum +Pb + CC

‘ 1072
o Odeg
o 1074+ o 15deg
e o ° ° 30 deg
107 © Odeg | © o 45deg
o 15deg o o 60deg
& at o 75deg
5 . . o 90 deg
B0t H and A from MC simulations .
E bt -l
5 o o o o CE 10“3-
= 106 & o g g g g = o
3 & 3 2 g 3 ; 3
10710 1010 & 3 ) s 8
| 0 5 1IU 1I5 2l{J 25 5 1-0 1I5 2-0 25
cm cm
I t Radiation source terms, H 50 Attenuation lengths, A
P . cocdebethindh R .
npu 10710
Target type il I i, _
Shielding . f".‘dt'ng l_: at.”d A s
materials 5 . In er.po a |rllg -
— £ for intermediate thicknesses
Shielding = \ =
thickness w0 ' 10/
distance | / Al
: e g | b--S--ooC A O MO
angle 5 10 15 20 s 9% 10 15 =

Thickness [cm] Thickness [cm]

25

102 _ 30° dose through c_oncrete at 1.0m
t ~+-dose
n-dose

lead
concrete
~-dose
n-dose
——total dose

101-,’

Dose [mrem/h]

10-2 I ——

0 10 30
Depth [cm]

20 40 50

ﬁ-)i
1Ay
n-,\l

nw\2

1 |-- interp

— — interp
— — interp
— — interp

| * pick

RADSYNCH23 - ESRF, Grenoble, 2023

——total dose |

19



Comparison with realistic-geometry simulations (1)

calculated 10 cm steel to add to 60 cm CC to lower dose from 30 to 10 uSv/h

Dose rate above SR01 straight section for stored beam and swap out losses

-1800

-2000

-2100

cm

-2200

-2300

-2500

1000

< 100

30 pSv/h
— 20 uSvih
15 uSv/h

10 uSv/h

0.1

2000 2100, 2200 2300 2400 2500 2600 2700

cm

‘ &5 ALs-U

Total dose rate from kicker, collimator #1 and #2 routine losses

Dose rate [mrem/h]

~ 5uSvh

5 uSv/h
10 uSv/h 10 pSv/h
2100 2200 2300 2400 2500 2600 2700 2800

Z [cm]

Dose [uSw/h]

A 75° dose through shielding at 1.0 m

a 10 20 30 40 50 60 70
Depth [cm]

RADSYNCH23 - ESRF, Grenoble, 2023 20



Comparison with realistic-geometry simulations (2)

calculated 2 uSv/h outside the shielding calculated 1.5 uSv/h outside the shielding

-3000 -3000
20 £
p— = L]
= 2 -
=3
3200 - -3200
-3400 -3400
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200

Z fem ID, 30 d
o ©d magnet, 90 deg

calculated 0.8 uSv/h outside the shielding

i,

X [em]
Dose [uSv/h]

0 200 Ann Wy wnn Ty 170}

magnet, 90 deg + ID, 30 deg RADSYNCH23 - ESRF, Grenoble, 2023

.. (Za
il BERKELEY LAB %9}‘ ALS-U

Dose [uSvih]
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SRO1 special case

concrete removed to TN
accommodate beamlines /

supplemental CC shielding
thickness was calculated
with toolkit and then
realistic simulations ran to

confirm
70cm CC+5cmPb > 5-10 uSv/h 70 cm CC 5 - 10 uSv/h (no collimator #1 loss)
Total dose rate from kicker, collimator #1 and #2 routine losses Total dose rate from kicker, collimator #1 and #2 routine losses
1e7 ' aa 1e7
-1800 -1800 by By
1e6 g 1e6
-1900 -1900
: 1eb5 1e5
2000 1 2000
- 1e4 ™ effect of Pb panel on trans wall
-2100 1 _-2100 100 10’
1e3 1 1e3
-2200 <2200 5 100
1e2 1e2 _
-2300 -2300 E O E
K “ k Te1 1e1 % ; 10 %
2400 enclosure 2400 50 8
i 1 1 102
2500 - -2500 20 uSvih ;‘_" —"
1e-1 \ 1e-1 no panel o
2100 2200 2300 2400 2500 2600 2700 2800 2100 2200 2300 2400 2500 2600 2700 2800 RADSYNCH23 - ESRF, 0 400 150 22
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Effect of magnetic fields on dose

 Implemented B-fields for magnets, including focusing effect of
combined-function magnets

Photon effective dose at beam height (50% of 0.18 nC/s) Photon effective dose at beam height (50% of 0.18 nC/s)
-1200 107 -1200 :

108 108

1400 [N\ RO\ E 11400 | NN ————
: 10° 10°
10t 10*

1600 AR LY : R

-1800

Y [cm]

3
N
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: : 1 01
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2000 | o R /T B O 2000 [
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3000 -2800 -2600 -2400  -2200 3000 -2800 -2600 -2400  -2200
Z [cm] Z [cm]

L
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Conditioning — NEG not-
activated

Gas bremsstrahlung (GB)

Conditioning — NEG activated

1.E-05

1.E-06 1.E-06

e GB from SR already shielded with Pb belly
bands and with collimators and stops along

1.E-07 1.E-07

Total average pressure (torr)
Total average pressure (torr)

. 1.E0 =5 nTg 1.E08 ~5nT
the beamllnes = Y = 3.024E-07 % 6-013E-01 g Y = 1.526E-Q7)X5-077E-01
e  GB from AR directed towards ratchet walls e w0 e wes  wme 61 a0 e oame wed

at~2m

e  Calculations for 14 nTorr (50 nTorr abnormal),
air composition instead of residual gas

. Lengths: 9.6 mand 2.8 m

*  Unshielded dose > 10 uSv/hour (nominal
pressure)

Shielding requirements: local tungsten blocks at
dipole exit

Ml BERKELEY LAB 5:-9}‘ ALS-U RADSYI J 24




Penetrations

6" can

2.5" hole

. Diagnostics beamlines on roof blocks, need for
two 15 cm diameter penetrations, concrete
plug around vacuum pipe and dog-house
shielding above the penetration

Concrele\blocks

. HVAC: 50 cm x 50 cm apertures in the inner
wall. Already drilled and shielding has been

P =

. . 2
commissioned, concrete blocks with steel and ) B
polyethylene wings |
. Electrical (® < 15 cm): no shielding but at no wioo o 0Ameemh—] [ 0.fmremh—
. . . . . 50 400 %0 W;mlﬁll 200 150 o o So0 4% 0 As0 Nncm:h 200 150 100 o
more than 39 cm height; existing ones at celll‘ng " tunmnelcrosssection
level on the inner wall all already closed or will - [ — —— |
be before AR commissioning o l o
: o
E
‘ 1
0.1 rnrern!h,—_ | 0.1 mrgm!h—_:,

0

cm cm

(& -
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Accelerator shielding requirements

e  With the 30-60 cm ratchet walls, shielding retrofit assumptions on Pb thickness
adequate to meet design goals on the experimental floor, with local shielding:

. 10 cm steel “car-port” to cover the collimator areas for lateral shielding

. Pb in the fwd direction, in addition to Pb panels and belly bands for all transition walls,
also at floor level

. W blocks in AR dipoles

Neutron fluence through shield (80-90°)

<
%

S,
&

+ being outside of forward-cone but little
| aftenuatiop-effect by on 1 MeV n peak

S
@

 Steel panels to be used on side walls

<
=

e,

* Ingeneral side walls panel can start 30 cm above the floor

*  Doses on the unmodified roof blocks (30 cm) can be as high as 15 uSv/hour
without any retrofit and access to the roof will be limited with exclusion zones |
and regulated with badge entrance I

16 i i i i i . . i i i ; i i
107 10° 10® 107 10 10% 10t 10® 102 10" 1w0® 10" 102 10?

*  Doses on retrofitted blocks (60 cm) will be below limits, except for the o
collimator area

(LS S
it

dN/d(logE) [1/om? per e-]

1018

Fluence.

S
=
T

i

ent

it

 All calculations include several safety factors: loss input x2, no effective

shielding length for angle > 60 deg, gas pressure 3x higher, used 50% of total
losses at 1 collimator at a time

N - 26
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Conclusions

® Developed a semi-analytical toolkit to calculate dose and shielding requirements
without having to re-run MC simulations (after the initial effort)

® Benchmarked with realistic layout simulations: for angles > 60 deg results are very
close, it slightly overestimates by a factor 1.5 — 2 at small angles, which is expected
due to the lower attenuation of the forward showers

® Useful for most shielding calculations, still realistic simulations are needed for
complex layouts

® Limited to the ALS-U case, not a universal tool!

(7 _
il sericerey i | SO) ALS-U RADSYNCH23 - ESRF, Grenoble, 2023
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Bllil BERKELEY LAB

Targets

® Collimator (followed by magnets) is 6 cm long,

height of 1 cm, depth of 1.35 cm, curvature radius
of 4.25 cm

along the beam axis, the thickness is 4 cm or ~3 X, (Cu
radiation length is 1.436 cm)

at the beam axis, the lateral thickness is 0.5 R, (Moliere
radius is 1.568 cm)

Septum is 6 cm high, the wall thickness 2 cm, the
length is 100 cm and the electron beam is incident
with a grazing angle of 1 mrad

Magnet: coils inner diameter is 5.8 cm, outer
diameteris 20.8 cm, + 5 cm yoke, 40 cm long
(beam first interacts with a 0.135 cm thick
stainless-steel pipe)

&5 ALs-U

Dose [m2 * mrem per e-]

Dose [m2 * mrem per e—]

1076 — T
cylinder —8—
collimator ——
septum —A—
magnet —o—

1077

1078

107°

/)
1070 F BB
,952:.2‘?:‘::‘
= \
\ 5
107" 200
-12

L
-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180
Angle [degree]

1076 : .
cylinder ——
collimator ——
septum —A—
magnet ——

1077

1078

1 1
-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180
Angle [degree]
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Neutron dose

* Dose vs energy for neutrons exiting the transition wall
concrete e Neuronetiathe dose trouh shed 0.

L AL A
9in.Pb ——

Dose, dH/d(logE) [pSv per e-]

0 | TR T B RArY 1T R M 4 Dl el il
10° 10% 107 10®% 10® 10* 10° 102 10" 10° 10" 10> 10°
Energy [MeV]

P
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Looking at the transition wall from outside:
Dose rate

Total dose rate Photon only

Total effective dose at transition wall (50% of 0.18 nC/s)

Photon effective dose at transition wall (50% of 0.18 nC/s)
100

10! 100

50 N - ~0:1 mrem/h

_ < —_ <
e 0 = g 0 IS
L o L o
= w0 £ = £
k= ° k= °
£ g 2 8
-50 o -50 o
102
-100 -100
107
0 -50 -100 -150 0 -50 -100 -150

Transverse [cm] Transverse [cm]

Very clearly observe the effect of the Pb panel not reaching completely to the floor



Swap-out radiation hazards

. An errant electron bunch train reaching the experimental floor through a beamline for both ALS/ALS-U would
result in a very high dose 30 nC e- beam, 2 GeV on the white beam mask

E = 1500 GeV,a= 300 cm a= 00% SHIELD= 0.0 om

30 nC electron beam on the white beam mask

3 unshielded ’ mrem
% ;3’ 60 — ix10”
g ¥ ALS-U: 30x 40 1x10*
g 5 20 1x10’
: — Lo’
5 g 0 10000C
ot =220
i 10000
o -40 1000
-60 100
-80 I L L ! 10
PRODUCTION ANGLE (degrees) 0 100 200 300 400 500
Solid=Total; Dash=Neutron; Dot=Camma
i D B ek & e, e it i g et B o
digtance of 30 cm from the target, Results were caloulated with the SLAC SHIELD11 102 i —t
|12] analytic model. T
o ALS U 30X 9 900 mrem
= } } be }
E cr el S f r
. . . . = 100 = 401 " =
. An errant electron bunch train lost inside the shield walls with open £ b oE i + B * X ! T -y Sames ]
E i‘ . I :—2.5:.1 -
shutters would generate bremsstrahlung that propagates along the & o RERA - Lim 0300
. . . E i t + - 1.0m,0.5deg
beamline and generates high doses on the experimental floor g 100 | i SR —
% e
5 | | , ! omsous -
10-1 Jil.l+||1ith| IILIJIIIIIJIII
(2 0 2 4 6 8 10 12 37
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Clearing

Swap out controls and mitigations.....

Y 4

. Presently, at the ALS, several controls are in place to prevent it and mitigate its consequences: top-off credited
apertures (TOCAs), beam energy and current interlocks, shielding and interlocked radiation monitors. The
positions of the TOCAs have been determined with extensive tracking simulations that took a couple years and
required well defined specifications of all magnets

« ALS-U, while keeping all the other controls, has decided to use clearing magnets instead of the TOCAs: the
clearing magnets are now in baseline, and preliminary RP analyses have demonstrated the benefit of this

strategy

. A full analysis has been performed specifically for beamline 5.0 (wiggler) and has been internally reviewed

. More analyses are needed to evaluate existing shielding and potential need for improvement

beam lost at crotch

1x10°
1x108
1x107
1x10°
10000
10000
1000
100

10

e cm - i - i -
R GERKELEY LAB \O‘\ ALS-U ALS-U Project | CD-3 DOE Review | August 2-5, 2022
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Neutron cross-talk

Back-scattered neutrons from (y,n) generated in forward angles due to
high-energy bremsstrahlung lead to overestimate of neutron source
term and underestimate of attenuation length at lateral angles

Solution: Substitute shielding at 0-30° to blackhole in the simulation and
run separately for larger angles 30-90°

Neutron fluence (80-90 degrees
Neutron fluence u u ( grees)

" no shield
lead shield

10

| with neutron cross-talk

: JQN‘J solely from collimator
Al | |
L

L PR n PR n sl " Lo " L N PR TR
1078 102 107! 10° 10 102 10°
200 400 600 800 1000 Energy [MeV] 3

X [cm]

_

o
o
T

600

Y [cm]

N
On

N
‘\

ELWVl neutron cross-talk from ™,

,

Fluence [1/cm2/s]
Fluence, dN/d(logE) [1/cm2/s]

shallow angle bins to

larger angle bins

200
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Neutron energy spectra

At 0° large number MeV-range neutrons
are generated via (y,n) from forward-
peaked high-energy bremsstrahlung
within Pb shielding as seen below

Neutron fluence through shield (0-5°)
10_5 E T """‘? LA B B “""‘! RERLRRLLY LAY LAY L L B """'! T “”"'! T ""'"! T E

or ool Tind g,

Fluence, dN/d(logE) [1/cm2 per e-]

0°: 23 cm Pb + 45 cm concrete
-14
107 ¢ "ayert 3
F : H layer2 : i . 1
F | | layer3 H : H 1
0 10718 bl il il il ST T RN TN R
rrrrrrrr BEF 10" 10° 10® 107 10® 10° 10* 103 102 10" 10®° 10" 10 10°

Energy [MeV]

Fluence, dN/d(logE) [1/cm2 per e-]

Fluence, dN/d(logE) [1/cm2 per e-]

Neutron fluence through shield (80-90°)

- At 90° significantly less (y,n) in Pb dueto
10° being outside of forward-cone but little E
s | atenuationgffect by on 1 MeV n peak 5 ,
I ] ]
101k 4

o blle

10"

10718 |

16 [
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a)
| | | | |

| Il
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Neutron fluence through shield (80-90°)
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SR Dynamic pressure profile

1000AHr pressure profile along beam path
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Pressure (torr)

.. (Za
il BERKELEY LAB %9}‘ ALS-U

AR dynamic pressure profile

Pressure @ 100 AHr — NEG not-
1206 activated :
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SR arcs divided in 2 different sector structures

Charge #4
Achromatic ~ TWiss Central Achromatic .
Sta nd a rd ArC Central Matchin Matching H B E N D ArC ARC Matchin TW|S'S
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. ARC Section ection ) Section Section .
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Reference image of standard machine lattice functions illustrating
placement with respect to the BENDA magnets.
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Reference image of HBEND lattice functions illustrating
placement with respect to the BENDA magnets.
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Dose [mrem per e-]
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Dose contribution from electrons & positrons

 Electrons & positron dose outside shielding is at least an order of magnitude less than photon and

nheutron dose

Dose contributions at 0° with 0.6° bin or 9 cm arc
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Effect of binning size on dose

FLUKA geometry uses R =9 m, so choice of bin size can underestimate the dose

at shallow angles...

Underestimate of the dose at 0° and slight disagreement at 15°

Good agreement of the dose at 30°, 45° and 90°

Solution: Use small 0.6° binning for forward angles and 5° binning is acceptable

at lateral angles

Total dose at 0° with various binnings (50% of 0.18 nC/s) Total dose at 15 with various binnings (50% of 0.18 nC/s) Total dose at 30° with various binnings (50% of 0.18 nC/s)
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