

NanoTerasu

## Shielding design for NanoTerasu: gas-bremsstrahlung and induced radiations



Photo courtesy of PhoSIC

<u>Akihiro Takeuchi</u><sup>\*</sup>, Masayuki Hagiwara<sup>\*</sup>, Hiroki Matsuda<sup>\*</sup>, Toshiro Itoga<sup>+</sup>, Hiroyuki Konishi<sup>\*</sup>

\*National Institutes for Quantum Science and Technology <sup>+</sup>Japan Synchrotron Radiation Research Institute (JASRI) 30/05/2023 Radsynch23









- 1. NanoTerasu
  - a. Synchrotron Radiation Facilities in Japan
  - b. Introduction
  - c. Location and Access
  - d. Overview
  - e. Project status
- 2. Shielding design
  - a. Radiation-controlled area
  - b. Beam loss
  - c. Calculation method
  - d. Shielding structure
  - e. Dose calculation and measurements
- 3. Summary

1-a : Synchrotron Radiation Facilities in Japan







## 1-b: Introduction





Origin of the facility's name

NanoTerasu

Nano : the scale of observation that will be conducted at the facility

Terasu : the Japanese word for shining a light on something

the goddess of the sun in Japanese mythology "Amaterasu"

#### 14/05/2023

The G7 Science and Technology Ministers' Meeting was held in the experimental hall of NanoTerasu.





https://www8.cao.go.jp/cstp/english/others/2023/g7\_2023\_en.html

### 1-c : Location and Access to NanoTerasu in Japan NanoTerasu





#### Sendai:

- Population: 1 million
- 90 minutes from Tokyo on the Bullet Train







## 1-d : Overview of NanoTerasu





This project was started in 2019 and scheduled to operate in 2024. At the beginning 10 beamlines will be operating.

| Electron energy                                | 3 GeV       |
|------------------------------------------------|-------------|
| Natural emittance                              | 1.14 nm.rad |
| Stored current                                 | 400 mA      |
| Max (Beginning). number of undulators          | 14 (8)      |
| Max (Beginning). number of multi-pole wigglers | 14 (2)      |



## 1-d : Linac



#### Electron gun



#### 3 GeV C-band (5.7 GHz) accelerator (40 of 2m-long-cavities)



#### Beam dump (Steel)



| Parameters               |         | Injector |
|--------------------------|---------|----------|
| Beam energy              | E (GeV) | 3        |
| Normalized emittance     | (µmrad) | <10      |
| Emittance at 3 GeV       | (nmrad) | <1.7     |
| Bunch charge             | (nC)    | 0.3      |
| Repetition rate (Normal) | (Hz)    | 1        |



## 1-d : Storage Ring: 4BA lattice





#### **Electron beam absorber (Graphite)**











## 1-d : Beamlines



### Undulators and MPWs in the first phase 10 beamlines











### 1-e : Project status











### **Radiation-controlled area**

## 3-b : Assumption of beam loss and point

NanoTerasu





## 3-b : Assumption of beam loss and point





## 3-c : Shielding calculation method

NanoTerasu





3-c : Residual gas composition for gas bremsstrahlung calculations



Most of the residual gas components in the storage ring are  $H_2$ 

Shielding design (Previous studies [Air]  $\times$  gas correction)







### **Electron Beam loss**

### Shielding wall

### Beam dump





### Concrete : 1 m thick

### Steel : 0.5 m thick





### Gas Bremsstrahlung (inside tunnel) Beam Shutter



### Tungsten alloy : 30 cm thick

Local shielding Local shielding



### Lead : 10 cm thick

### Local shielding



Lead : 30 cm thick





### Gas Bremsstrahlung (outside tunnel) Local shielding Enclosure







### Lead : 1 cm thick



x [mm]



00 dose rate (uSv/h)

10



Measurement 6.5 uSv/h

5000 10000 15000 z [mm]



3-e : Dose calculation



## Gas Bremsstrahlung (inside tunnel)

PHITS ver.3.24





3-e : Dose calculation



## Gas Bremsstrahlung (outside tunnel)





Lead : 30 cm thick

Lead : 10 cm thick **21** 



## 4 : Summary



- NanoTerasu is the first facility in Japan designed to exclude most of the experimental hall from radiationcontrolled areas.
- Shielding design is evaluated using empirical equations and monte-carlo simulation.
- The beam commissioning has been started in April 2023.
- User operation is scheduled to start in April 2024.



# Thanks for your attention!

Photo courtesy of PhoSIC



To Boldly Look Where No One Has Looked Befor Course for the New Nano Word. Engage!

### Light source overview



- Brilliance ~10<sup>21</sup> photons/sec/mm<sup>2</sup>/mrad<sup>2</sup>/0.1% b.w. for 1-3 keV
- MPW Hard X-ray (HX) sources

#### APPLE-II is the workhorse of the SX sources.

| BL         | ID              | $\lambda_w(mm)$ | N <sub>w</sub> |
|------------|-----------------|-----------------|----------------|
| 02U<br>07U | APPLE-II        | 56              | 71             |
| 06U<br>08U | APPLE-II        | 75              | 53             |
| 13U        | 4 Seg. APPLE-II | 56              | 11 x 4         |





### Storage ring (SR): 4BA lattice





1.6m straight for MPW

| Ring parameters                            |                                    |
|--------------------------------------------|------------------------------------|
| Natural emittance                          | 1.14 nm.rad                        |
| Energy spread                              | 0.084 %                            |
| Betatron tune $(v_x, v_y)$                 | (28.17, 9.23)                      |
| Natural chromaticity ( $\xi_{x'}\xi_y$ )   | (-60.50, -40.99)                   |
| Damping partition number $(J_x, J_y, J_z)$ | ( <mark>1.389</mark> , 1.0, 1.611) |
| RF accelerating frequency                  | 508.759 MHz                        |
| Harmonic number                            | 592                                |
| Natural bunch length                       | 2.92 mm (9.74 ps)                  |

| Magnet       | Max. fields           | #/cell | #/ring |
|--------------|-----------------------|--------|--------|
| B-Q combined | 0.87 T<br>-7.1 T/m    | 4      | 64     |
| Quadrupole   | 49 T/m                | 10     | 160    |
| Sextupole    | 1540 T/m <sup>2</sup> | 10     | 160    |

H-focusing: 8 quads. V-focusing: 4 B-Q combined bends + 2 quads.

### SR: Magnet

#### Concept

Magnet system with small number of types and power supplies for low cost and easy maintenance



### SR: Magnet

- Aux. power supply to an individual Q for mag. field adjustment
- Aux. coils for SX as steering magnets and fine tuning of mag. field

#### Concept

Magnet system with small number of types and power supplies for low cost and easy maintenance



### 2-1. SR: Vacuum

Goal: 20h of gas scattering lifetime for 400 mA current requiring  $1 \times 10^{-7}$  Pa CO equivalent



#### **Features**

• Stainless steel (316) chamber with 2 mm thickness and Cu plating inside to meet short gap and to reduce impedance



## 2-1. SR: Vacuum

Goal: 20h of gas scattering lifetime for 400 mA current requiring  $1 \times 10^{-7}$  Pa CO equivalent



#### **Features**

- Stainless steel (316) chamber with 2 mm thickness and Cu plating inside to meet short gap and to reduce impedance
- Discretely arranged 10 photon absorbers (AB), 2 crotch ABs (CR), 4 supplemental ABs (SAB) and pumps
- Electron beam absorber for the high intensity beam to be spread out during beam abort



AB/CR placed at 17 or 29 mm from beam trajectory.



- Horizontally compact vacuum chambers.
  - Only 4 types (1 AB, 2 CR, 1 SAB) for low cost and easy maintenance
  - Max. SR peak power density of ~200 W/mm<sup>2</sup>
  - Average pressure is 6 × 10<sup>-8</sup> Pa (CO) at 400 mA after 1500 Ah dose → 22hrs. lifetime

#### Public-Private Regional Partnerships promoting NanoTerasu.

The next-generation synchrotron radiation facility satisfies many of the needs in academia and industry. It will strengthen research capabilities and improve productivity in our industry, academia, and national research sectors. This project will be a leading case of a large-scale state-of-the-art research facility based on public-private regional partnerships.

(December 17, 2018 Press conference by the Minister of Education, Culture, Sports, Science, and Technology.)

#### [National Agent]

National Institute of Quantum Science and Technology (QST)

#### [Partners]

- Photon Science Innovation Center (PhoSIC/General Incorporated Foundation )
- Miyagi prefecture
- Sendai City
- Tohoku University
- Tohoku Economic Federation

#### Operational in FY 2024

| Task                    | Constructor                          |  |
|-------------------------|--------------------------------------|--|
| Electron<br>Accelerator | Government                           |  |
| Beam Lines              | Government: 3 BLs<br>Partners: 7 BLs |  |
| Building                | Derteere                             |  |
| Land forming            | Farthers                             |  |

### Total budget 270 million USD

Limitations of Japanese Law public dose limit

# 1.3 mSv/3M

Evaluation Time  $8 h/d \times 5d/w \times 13w/3M = 520 h/3M$ 











