### ELI Beamlines facility: Heading towards operations



### A. Cimmino, D. Horváth, B. Lefebvre, Veronika Olšovcová<sup>\*</sup>, M. Šesták, R. Truneček, R. Versaci

veronika.olsovcova@eli-beams.eu

ELI Beamlines, Extreme Light Infrastructure ERIC, Dolní Břežany, Czech Republic



# ELI ERIC

### The Extreme Light Infrastructure (ELI)

- Research Infrastructure part of the European ESFRI Roadmap.
- 1. 1. 2011 start of parallel implementation of 3 sites
- 30.4.2021 ELI ERIC founded
- Founding members: CZ, HU, IT, LT
- Founding observers: DE, BG
- Countries interested in joining: CH, ES, PL, PT





### **ELI** sites

- International, civilian, laser-driven user facility.
- Open-access, single-interface user-facility

#### **ELI** Beamlines

New generation of secondary sources for interdisciplinary applications in physics, medicine, biology and material sciences Physics of ultrashort attosecond pulses

**LLI** Attosecond

**ELI** Nuclear Physics Photonuclear physics,

nuclear spectroscopy





### ELI ALPS www.eli-alps.hu

- "Attosecond Light Pulse Source"
- Szeged, Hungary
- Light sources between THz (10<sup>12</sup> Hz) and X-ray (10<sup>18</sup> -10<sup>19</sup> Hz) frequency range
- 5 laser systems
- 8 experimental stations





### **Applications**:

- Attosecond studies in atomic and molecular dynamics
- Nanophysics, materials science
- Plasma physics
- Radiobiology
- THz spectroscopy



### ELI ALPS www.eli-alps.hu



ELI ALPS Virtual tour: https://www.youtube.com/watch?v=zlxsgJHqiq0



### ELI NP www.eli-np.ro

#### Magurele, Romania

- 2 laser systems
- Intensities 10<sup>23</sup>-10<sup>24</sup> W/cm<sup>2</sup>

### Applications:

- Photonuclear reactions
- Exotic nuclear physics
- Astrophysics
- Characterization of laser – target interaction





Variable Energy Gamma System

#### Laboratories and workshops



#### 2 x 10 PW High-Power Laser System



2 x 10 PW + 1 x 1 PW Laser Beam Transport System



9 Experimental areas





### ELI NP www.eli-np.ro



Videos from ELI NP: https://www.youtube.com/channel/UC8\_QtgJqMppmfJF3rxgwAHA



### **ELI Beamlines**



### **Integrated in the ERIC from 1.1.2023** Located on the outskirts of Prague





### **ELI Beamlines**



#### L1-Allegra: 10 TW, 100 mJ, 1 kHz



#### L3-HAPLS: 1 PW, 30 J, 10 Hz



#### L2-Duha: 100 TW, 2 J, 50 Hz



#### **L4-Aton:** 10 PW, 1,5 kJ, 0,016 Hz



















### Ion acceleration

- Commissioning started in 2020
- 1st phase: protons up to 60 MeV
- Later 200-300 MeV



### **Plasma physics**

- Commissioning started in 2020
- Mixed source at large emission angles







# From spontaneous to coherent electron radiation

- Commissioning started 05/2022
- Up to 600 MeV electron, 1% spread
- $\lambda ph \sim 2-5nm$  (water-window)

### **Electron acceleration**

- Commissioning started 05/2023
- 1st phase: multi-GeV
  - 600 MeV last week 😊





### **E2**

- Installations ongoing
- Commissioning to start late 2023
- Electrons up to 2 GeV
- X rays used for experiments



### **ALFA** Testbed

- Commissioning started in 2021
- Electron acceleration proof of concept
- ~150 MeV in spring 2022



### **Character of generated fields**

- Pulsed length of primary pulse ~10<sup>-14</sup>s
- Low repetition rate: 0.1 Hz 1 kHz
- Mixed e-, p+, n, μ
- Wide spread of energies (10<sup>0</sup> eV to 10<sup>9</sup> eV)
- Extremely high dose rate in a single pulse
- Strong magnetic field (10<sup>2</sup> kV/m)

### Source term not well known

- Subject of research
- Strongly dependent on the experiment



# Monte Carlo simulations

### Code FLUKA.CERN Studies for model experiments:

- Dose rate maps
- Activation
- Radiation damage
- Shielding





Results as solid as the knowledge of the initial conditions





# Monte Carlo simulations

### Code FLUKA.CERN Studies for model experiments:

- Dose rate maps
- Activation
- Radiation damage

version 4-3.0 released in 09/2022 SYRASTEP card

simulates the emission of synchrotron radiation photons along charged particle step



#### the initial conditions





# Personal safety systems

Interface between laser and experimental halls - gate valve in the BT

#### Laser halls

- LSS
- Laser hazard only
- Inhouse
- Running since 2018



V. Olsovcova, RadSynch 30.5.-2.6.2023, ESRF

#### Experimental halls: Temporary solution

- TPSS
- Laser and radiation hazards
- Allows operation with defined limitations
- Complemented with administrative measures
- Inhouse
- Running since 2020
- 2 halls (as of 2023)



#### Experimental halls: Targeted solution

• PSI

- Laser, radiation, vacuum, HV, gas...
- Rockwell automation
- Running: 1 hall (2020)
  2 hall (2022)
  2 halls to install (2023)



#### • PSI

- Laser, vacuum hazard
- 1 BT running (2022)
  1 BT installed
- 1 BT to be done (2023)





# **RP standard measures**

- People not allowed in the experimental area
  - laser and IR safety (covered by personal safety interlock)
- Monitoring system of ionizing radiation
  - For RP purposes in the control room (γ, n)
  - In the experimental area (γ , n)
    - to benchmark simulations
    - to understand behaviour of the system
- Monte Carlo assessment





First experience (RP viewpoint)

- Do not blindly trust your measurements!
- Tiny change in experimental setup can lead to very different radiation fields.
- No source term is weak enough to be neglected.



# Do not blindly trust your measurements!



### Goal of "Short Focal Length" experiment

- Test of target systems
- L3 laser HAPLS, gradual ramp up to 12J, 3.10<sup>-14</sup> s laser pulse length
- Single shots to sequences at 3.3 Hz for 20 s
- Production of X-rays and of low energy electrons
- Expected source term: 10<sup>-7</sup>C of electrons/shot, Maxwell-Boltzmann T=1.4 MeV





### Given the

- expected source term
- total number of shots
- geometry (chamber wall 5 cm of Al)

### **NO radiation** above background level **expected** (avg bg <0.1 μSv/h)

The reality...



### Given the

- expected source term
- total number of shots
- geometry (chamber wall 5 cm of Al)

**NO radiation** above background level **expected** (avg bg <0.1 μSv/h)

The reality...

within first day of shooting:

### ~3 μSv/h – of neutrons above 20 MeV!





### Given the

- expected source term
- total number of shots
- geometry (chamber wall 5 cm of Al)

ha

NO radiam

Ihe

Oh wait... Indeed?

within first day of shootin

# ~3 µSv/h – of neutrons

above 20 MeV!



- Active systems:
  - LB6419-PANDORA
  - EPDn
  - Sensitive to γ only: EPDg, CryRad
- Passive systems
  - Bubble detectors
  - CR39
  - Sensitive to  $\gamma$  only: OSL, DIS
- At beam height
- Over  $2\pi$









Interpretation with the fundamental help of Albrecht Leuschner (DESY)

![](_page_28_Picture_0.jpeg)

- Bubble detectors
- Tracked-etched (CR39)
- EPDn

- ~0.1 microSv/day in 200 keV 15 MeV region
- on **background** level

up to **17 mSv**/day

- No correlation observed with
  - Laser energy
  - Target
  - Number of shots
- No high energy neutrons
- Low energy neutrons present
   origin unclear. Prepulse?

![](_page_28_Picture_14.jpeg)

#### View to P3 through a port

![](_page_29_Picture_0.jpeg)

# No source term is weak enough to be neglected

![](_page_30_Picture_0.jpeg)

# No weak source term: Astrella experiment

Small setup with a commercial Class 4 laser "Astrella"

- Rep. rate 1 kHz, water jet target
- Expected source term: protons, 1 MeV
- Wall: 1 cm thick steel

No measurable radiation expected outside the chamber

![](_page_30_Picture_7.jpeg)

![](_page_30_Picture_8.jpeg)

![](_page_31_Picture_0.jpeg)

# No weak source term: Astrella experiment

Small setup with a commercial Class 4 laser "Astrella"

- Rep. rate 1 kHz, water jet target
- Expected source term: protons, 1 MeV
- Wall: 1 cm thick steel

**Reality**: 12 uSv/h rate detected by EPD in close chamber vicinity

→ OSL installed, cumulative dose up to 200 uSv/over 12 hour operation

![](_page_31_Figure_8.jpeg)

![](_page_31_Picture_9.jpeg)

![](_page_32_Picture_0.jpeg)

# Tiny change in experimental setup can lead to very different radiation fields

![](_page_33_Picture_0.jpeg)

#### ALFA (Allegra Laser For Acceleration)

- Electron beam of energy up to 50 MeV
- Laser energy 16 mJ
- Repetition rate 550 Hz

![](_page_33_Figure_6.jpeg)

![](_page_34_Picture_0.jpeg)

![](_page_34_Picture_2.jpeg)

The dosimeters were placed on the front face of the PMMA phantom

![](_page_35_Picture_0.jpeg)

![](_page_35_Picture_2.jpeg)

GAFChromic film scan

- Irradiation time = 400s
- Total pulses = 220 000 pulses
- Beam profile= 1 MeV to 13 MeV
- **Divergence =** 12 mrad @ 5 MeV
- Average energy = 3-4 MeV
- Average dose = 1,45 mGy

![](_page_36_Picture_0.jpeg)

 Shadows of the flange (~4cm form beam axis) and its 4 screws

![](_page_36_Picture_3.jpeg)

GAFChromic film scan

![](_page_37_Picture_0.jpeg)

GAFChromic film scan

- Shadows of the flange (~4cm form beam axis) and its 4 screws
- Results from passives difficult to interpret

![](_page_37_Figure_6.jpeg)

![](_page_38_Picture_0.jpeg)

FLUKA Monte Carlo

- Electrons: 3.5 MeV Average 2.5 MeV FWHM
- 12 mrad divergence
- Magnet centered with beam axis

![](_page_38_Figure_6.jpeg)

![](_page_39_Picture_0.jpeg)

#### FLUKA Monte Carlo

- Electrons: 3.5 MeV Average 2.5 MeV FWHM
- 100 mrad divergence
- Magnet centered with beam axis

![](_page_39_Figure_6.jpeg)

![](_page_40_Picture_0.jpeg)

FLUKA Monte Carlo

- Electrons: 3.5 MeV Average 2.5 MeV FWHM
- 12 mrad divergence
- Magnet shifted (maximum fluence)

![](_page_40_Figure_6.jpeg)

![](_page_41_Picture_0.jpeg)

### Conclusions

- The interlock and monitoring systems worked perfectly
- Ambient dose levels in populated areas compatible with background
- Designed shielding and protection measures proved adequate

![](_page_41_Picture_5.jpeg)

![](_page_42_Picture_0.jpeg)

### Conclusions

- MC simulations:
  - As solid as the input
  - Cannot reproduce campaigns with too many unknown parameters
  - Problem: shot-to-shot differences
- Radiation generated:
  - Often more energetic than expected

![](_page_42_Picture_8.jpeg)

![](_page_43_Picture_0.jpeg)

### Conclusions

Be suspicious!

- Higher safety factor than in conventional facilities is needed
- Interpretation of detector readings requires critical thinking

Future plan:

 Have a dedicated campaign, with fixed laser parameters (as many as possible)

![](_page_43_Picture_7.jpeg)

![](_page_44_Picture_0.jpeg)

"This machine is perfectly safe... As long as you never press this button."

![](_page_45_Picture_0.jpeg)

### **THANK YOU FOR YOUR ATTENTION**

veronika.olsovcova@eli-beams.eu www.eli-beams.eu