

MINISTRY OF SCIENCE TECHNOLOGY AND INNOVATION

11th International Workshop on Radiation Safety at Synchrotron Radiation Sources

Decommissioning of UVX Fernanda Moura

2023.06.01

Steps of dismantling

Topics

Simulations

Challenges, problems and results

Acknowledgment

- 32 years of history
 - 1987, start the commissioning with Linac

1991 Linac works in LNLS

1991 – Assembling of first components

MINISTRY OF SCIENCE TECHNOLOGY AND INNOVATION

2000

Installation of the 500 MeV injector accelerator.

- 1997-2006: Operated without roof.
 - During the injection, everyone should leave the experimental hall.
- Limit of 1 mSv/year respected in the entire experimental hall.

fernanda.moura@cnpem.br

- 1995: Assembly of the accelerators at the LNLS
- 2019: Shutdown
- 2021: Dismantling
- Supervisor Roberto Madacki (left) and Jose Roque, Director at CNPEM (right)

1995– Assembling of UVX, first dipoles

- Light for the science for 22 years
 - First users in June of 1997
 - Shutdown in August of 2019
 - Dismantling in February of 2021
- Annually, benefited **1200** Brazilian and foreign **researchers**.

1997 - UVX synchrotron light source is opened to the science and technology community with seven beamlines

MINISTRY OF SCIENCE TECHNOLOGY AND INNOVATION

UVX

- Second-generation with 100 nm.rad
- Linac: 80 keV to 120 MeV
- Booster: 120 MeV to 500 MeV
- Storage Ring: until 1,37 GeV with 250 mA
 - Critical energy: 2,08 keV
- Lifetime:
 - 15h @ 200 mA
 - 25h @ 100 mA

Topics

Steps of disassembling

Simulations

Challenges, problems and solutions

fernanda.moura@cnpem.br

- Before disassembling:
 - Monitoring in accessible parts of the accelerators.
 - Ionization Chamber (open window) and Geiger Muller
 - Only one point in LTB (~20 cps)

- Before disassembling:
 - But, and the parts we couldn't access?
 - Collect information for scenarios of *possible* activation (losses, efficiency of operation, materials, ..)
 - Simulations with FLUKA.CERN

Legend of scenarios

- 1: E-Gun
- 2: Linac
- 3: LTB
- 4: BTS
- 5: Storage Ring (lifetime)
- 6: Gas Bremsstrahlung

Legend of scenarios

Activation

1: E-Gun 2: Linac 3: LTB 4: BTS

5: Storage Ring (lifetime)

6: Gas Bremsstrahlung

But.. Operation time, material and dimensions?

Operation time	Element	Carbon steel (%)	Stainless steel (%)
8.285 days (11 months/ year in 25 years interrupting)	Fe	98,11	66,145
Cooling time: 500 days (since Nov 2019)	Mn	1,03	2,000
NAstorial	С	0,29	0,030
Carbon steel, stainless steel, aluminum, lead, copper,	Si	0,28	1,000
concrete, and titanium	Cu	0,20	-
	S	0,05	0,030
	Р	0,04	0,045
	Cr	-	17,000
	Ni	-	11,250
fernanda.mou	Mo Ira@cnpem.br	-	2,500 ₁₄

But.. Operation time, material and dimensions?

Dimensions

Extensive volumes with the beam incident normal to the face of the piece

Linac to Booster (LTB)

Number	Reference	Energy	Charge Lost Per Pulse (nC)	Configuration*
3	Linac to Booster	120 MeV	20	2.000 nC/day

Lifetime

Number	Reference	Energy	Configuration*
5	Storage Ring	1.37 GeV	250 mA

*Amount corresponding to 10% of the total losses in the stretch. Most of the losses in this case (90%) occur at energies below MeV, which are insufficient for activation

Results above 1 MBq (maximum)

Results spectrum @ 120 MeV

Stainless steel

18

Results spectrum @ lifetime

Stainless steel

fernanda.moura@cnpem.br

Practical result

But, what is the conclusion?

Before to disassembling:

• License to decommissioning with CNEN (Brazilian Nuclear Energy Commission)

• Disassembling:

- Blocks of Pb: Almost 80 ton of located shielding, 20% with high counts (kcpm).
- How to proceed? Use of spectrometer to confirm the radioactive elements

• Disassembling:

- Blocks of Pb: Almost 80 t of located shielding, 20% with high counts (kcpm).
- How to proceed? Use of spectrometer to confirm the radioactive elements

RIIDEye X-GN da Thermo Fisher Scientific

• Disassembling:

• How to proceed? Measurement with HPGe and stored.

Er	nt	e	er	f	e	r	e	n	ce	Э	С	01	rr	e	C	te	ed	1	Ac	ti	v	it	сy	1	Re	p	or	ct				16	5/	07	12	20	21	L	12	2:	08	3:	55					Pā	ag	е		3
k 7	* *	*	*	*	*	*	*	*	* 1	* *	*	* 1	* *	*	*	* *	*	* 1	**	**	*	*	* *	*	* *	*	* *	* *	* 1	* *	*	* *	*	* *	* 1	* *	* 1	* *	* *	* *	**	* *	* *	*	* *	*	* *	*	* *	* *	* *	
k 7	* *	*	*				Ι	1	N	Т		Е	F	2	F	F		R	Е	N	1	С	Е			С	C)	R	R		Е	С	Т	I	0	D		F	2	Е	Ρ	0]	R	т		1	* *	**	* *	
k 7	k d	*	*	*	*	*	*	*	* 1	* *	*	* 1	* *	*	*	* *	*	* 1	* *	* *	*	*	* *	*	* *	*	* *	* *	* 1	* *	*	* *	*	* *	* 1	* *	*1	* *	**	* *	**	*	* *	*	* *	*	* *	*	* *	**	* *	

Nuclide Name	Nuclide Id Confidence	Wt mean Activity (Bq /g)	Wt mean Activity Uncertainty
CD-109	0.945	1.793061E+002	1.870266E+001
PB-210	0.998	3.669779E+003	5.304593E+002
BI-214	1.000	4.212703E-003	7.447005E-004

? = nuclide is part of an undetermined solution X = nuclide rejected by the interference analysis @ = nuclide contains energy lines not used in Weighted Mean Activity

Errors quoted at 1.000 sigma

fernanda.moura@cnpem.br

- After disassembling:
 - Validation: No radioactive waste.
 - Pb: Stored all the blocks.
 - More than 80% of the beamline elements were transferred to Sirius
 - Financially:
 - Dismantling: R\$ 370.00,00 (69 k €)
 - Sale: + R\$ 1.000.000,00 (185 k €)
 - Save: + R\$ 35.000.000,00 (6.5 M €)

Thank

you

Merci pour votre écoute Obrigada

> Fernanda Moura rad@cnpem.br

MINISTRY OF SCIENCE TECHNOLOGY AND INNOVATION

