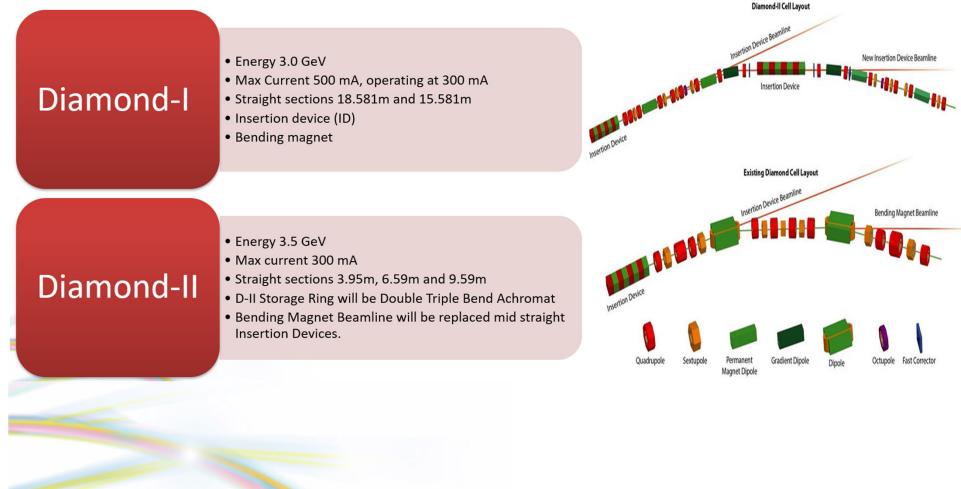


Shielding assessments for Diamond II machine upgrade


<u>Sanjeev Faruk</u> & Richard Doull Diamond Light Source Ltd.

Diamond II upgrade

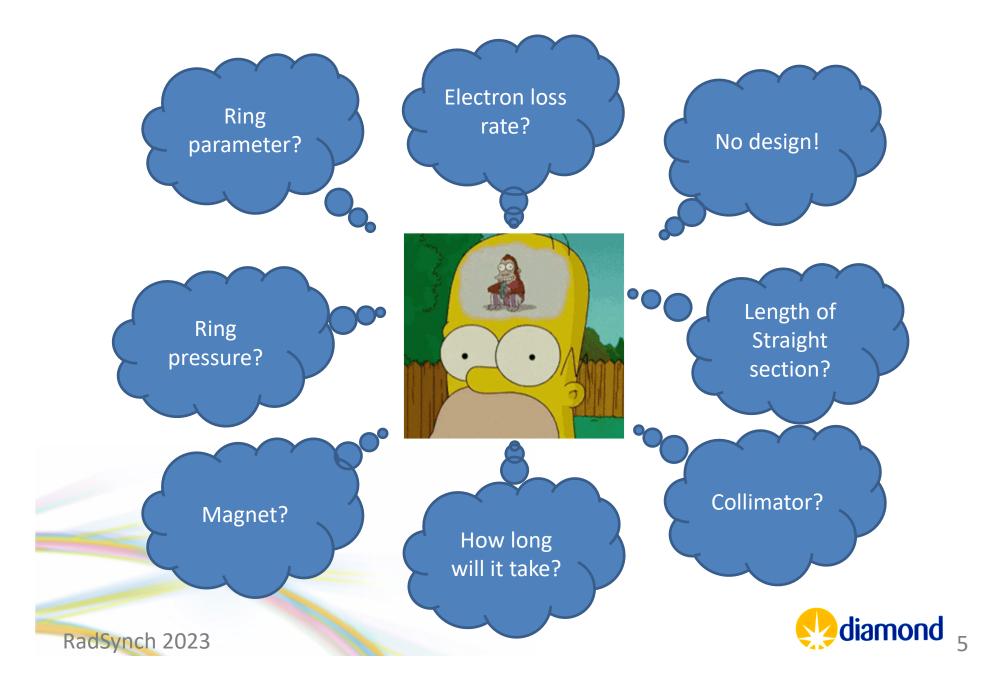
Diamond is currently working on enhancing the storage ring by minimising emittance while boosting brightness and coherence.

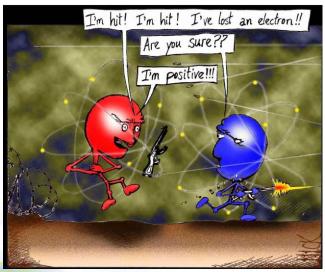
RadSynch 2019

In RadSynch 2019, we presented –

- Storage ring and Booster shielding checks using SHIELD11 for Diamond II.
- Gas Bremsstrahlung semi-empirical calculations to determine the Booster to Storage (BTS) shutter and port/optics shutter,
- STAC8 calculation for beamlines hutch shielding checks.

Goal: Is existing shielding adequate?


- Check if all the existing shielding is adequate to comply with the local limit (0.5 µSv/h) outside of
 - Linac bunker (concrete)
 - Booster vault (concrete)
 - Storage ring (Barytes & concrete)
- or do we need additional shielding?
- How to comply with the regulation?


Lack of information!

Electron loss - Normal

• Electron Losses

<u>Normal loss:</u> Persist over long periods

Courtesy of Humorgeeky.com

Loss location	Losses e⁻/s
Linac	1.6 10 ⁸
LTB1	2.9 10 ⁸
Booster injection	4.7 10 ⁸
Booster extraction	7.3 10 ⁷
Storage ring	4.2 10 ⁸

Estimated average electron losses at various points in Diamond-II under normal conditions.

Electron loss -Abnormal

<u>Abnormal loss:</u> occurs under test or fault conditions – persist for a short time

Loss location	Charge (nC)	Losses e ⁻ /s
Linac	9 nC	2.8 10 ¹¹
LTB	9 nC	2.8 10 ¹¹
Booster injection	7.2 nC	2.3 10 ¹¹
Booster extraction	7.2 nC	2.3 10 ¹¹
Storage ring injection	6.5 nC	2.0 10 ¹¹

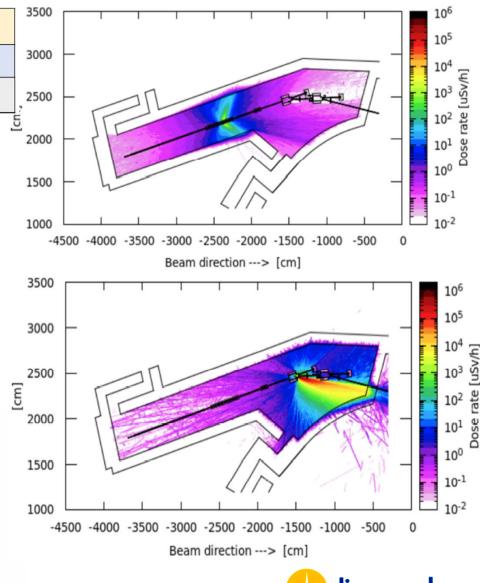
Estimated maximum abnormal electron losses at various points in Diamond-II

Abnormal loss scenarios

Location	Cause of abnormal loss
Linac	Mis-steering occurring due to corrector errors/failures in- between linac sections.
LTB	Linac beam directed into Faraday cup or mis-steered into the collimator.
Booster	Linac beam mis-steered, either hitting the injection septum or where it enters the narrow aperture vessels in the arcs.
Booster	3.5 GeV beam hits extraction septum.
BTS	Booster beam directed into Faraday cup or mis-steered into the collimator.
Storage Ring	Mis-steering of injected beam, hitting a collimator.
	Loss of stored beam through various mechanisms.

In estimating the loss rates, higher transfer efficiencies have been assumed than normal losses to be more pessimistic: 80% Linac end to LTB end, 90% Booster injection, 100% BR acceleration, 100% BR extraction, 100% SR injection.

Linac vault



Linac – normal loss condition

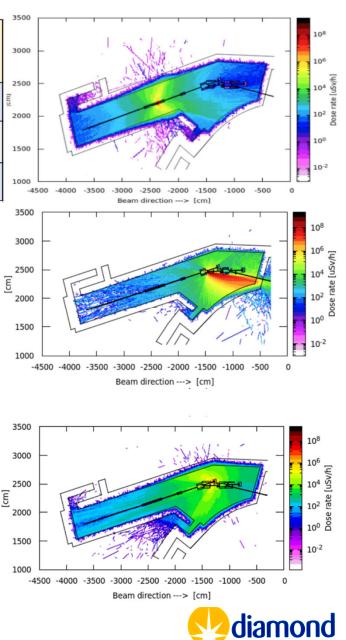
Loss location	Losses e ⁻ /s	Dose rate outside shielding µSv/h	Comments	
Linac	1.6 10 ⁸	< 0.1	Shielding is adequate	
LTB dipole	2.9 10 ⁸	90	PSS will restrict access to booster when the Linac is in operation.],

- Losses at the first LTB dipole could lead to 90 $\mu Sv/h$ in Booster Zone 1.
- Personnel Safety System (PSS) will be configured so the Linac can only operate when Booster Zone 1 is searched and locked.

Fig 1: FLUKA models showing dose rate (electrons, neutrons & X-ray) outside the Linac shield wall due to 1.6e+08 electron loss/s along the Linac (upper) and 2.9e+08 electron loss/s at the first LTB dipole magnet (lower)

Linac – abnormal loss condition

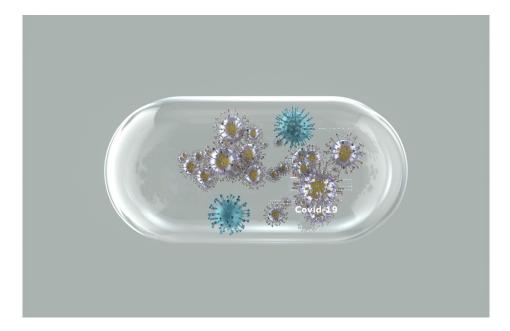
Loss location	Losses e ⁻ /s	Dose rate outside shielding (µSv/h)	Additional lead shielding required to reduce dose rates to 7.5 µSv/h	
Linac	2.8 10 ¹¹	90 & 30	23 mm & 13 mm	lcm]
LTB dipole	2.8 10 ¹¹	90000	N/A - PSS will restrict access to Booster Zone 1	
Faraday cup	2.8 10 ¹¹	30	13 mm	


<u>Mis-steering of quadrupole corrector magnet-</u> 23 mm of Pb in parallel to magnets on the rear entrance side, and 13 mm Pb installed on the main entrance side. LTB dipole

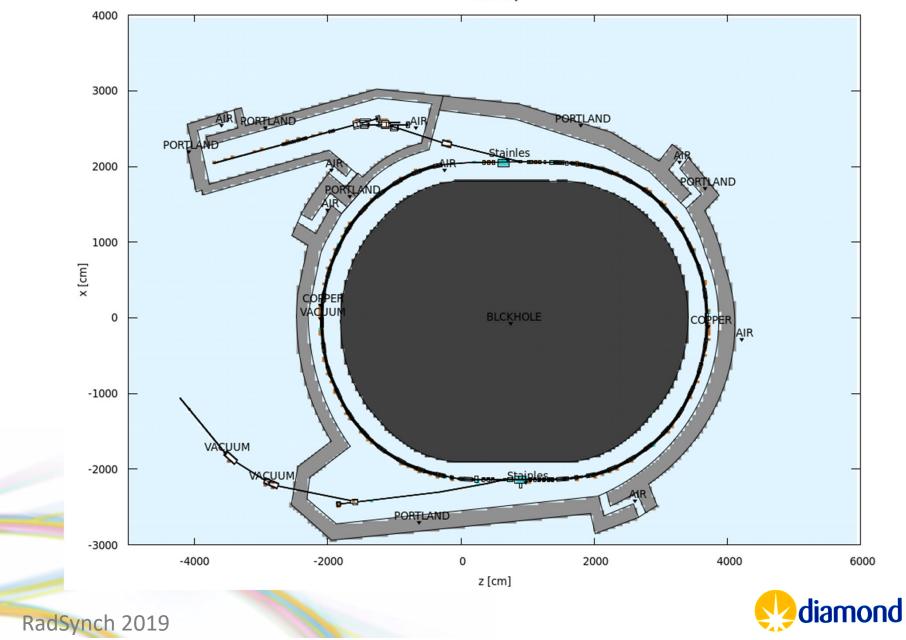
Booster zone 1 will be locked by PSS.

Faraday cup

An additional 13 mm Pb shall be installed on the Rear entrance side of the Faraday cup.


Fig 2: Mis-steering at a quadrupole corrector magnet (upper), at the LTB dipole magnet (centre) and in the Faraday cup (lower)

Booster ?!



Booster vault

Geometry

Booster Injection– normal loss

Loss Location	Losses e ⁻ /s	Dose rate outside shielding µSv/h	Comments
Injection Septum	4.7 10 ⁸	<1.0 [SW & R]	Less than 1000 hrs per year would be spent by someone in these areas, accessed infrequently, leading to the annual dose being less than 1 mSv/y; hence, no additional controls are necessary for the hall area.

SW = Side wall; R = Roof

Access to the roof will be restricted and only possible under a Permit to Work (PTW) procedure that ensures the Booster is off.

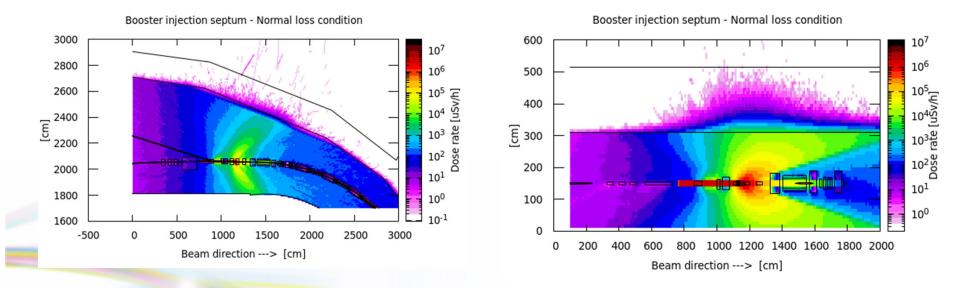
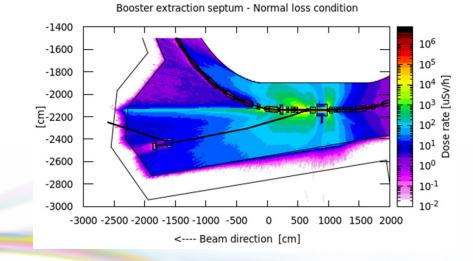


Fig 3: The Booster shield wall (upper) and roof (lower) due to 4.7E+08 electron loss/s at the injection septum magnet.



Booster Extraction– normal loss

Loss Location	Losses e ⁻ /s	Dose rate outside shielding µSv/h	Comments
Extraction Septum	7.3 107	<0.5 [SW] <1.0 [R]	This would not require additional controls for the hall area.

SW = Side wall; R = Roof

Access to the roof will be restricted and only possible under a Permit to Work (PTW) procedure that ensures the Booster is off.

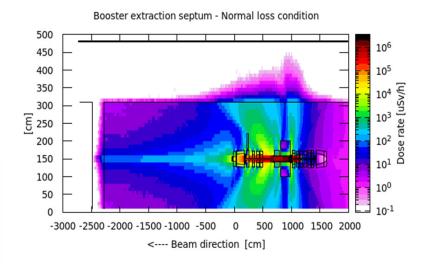
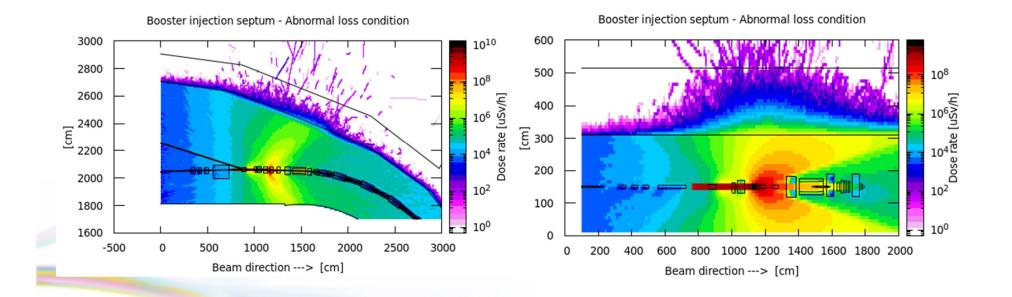


Fig 4: The Booster shield wall (upper) and roof (lower) due to 7.3E+07 electron loss/s at the extraction septum magnet.



Booster Injection– abnormal loss

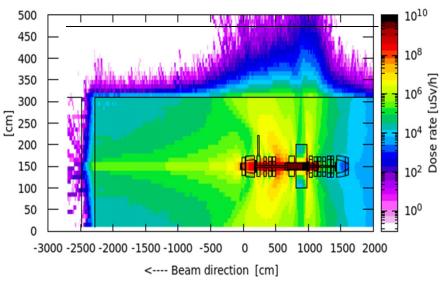
Loss Location	Losses e ⁻ /s	Dose rate outside shielding µSv/h	Comments
Injection Septum	2.3 1011	<300 SW & R	34mm of Pb shall be installed parallel to the septum magnet.

SW = Side wall; R = Roof

Access to the roof will be restricted in the above conditions and only possible under a Permit to Work (PTW) procedure that ensures the Booster is off.

Booster Extraction– abnormal loss

Loss Location	Losses e ⁻ /s	Dose rate outside shielding μSv/h	Comments
Extraction Septum	2.3 1011	<50 SW, <150 R	Local lead shielding (~17 mm) shall be placed around the septum.

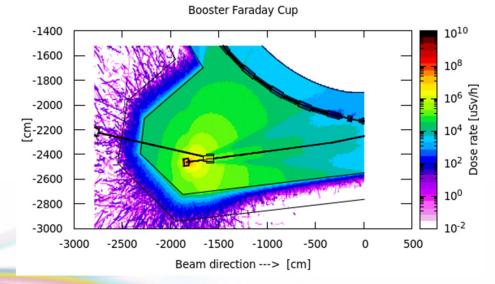

SW = Side wall; R = Roof

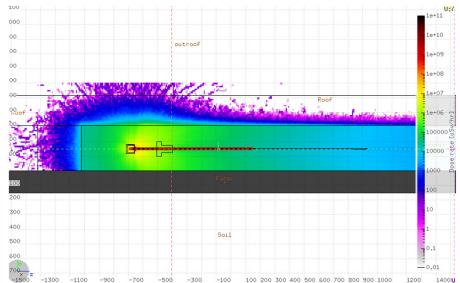
Access to the roof will be restricted in the above conditions and only possible under a Permit to Work (PTW) procedure that ensures the Booster is off.

-1400 1010 -1600 10⁸ -1800 10⁶ 10² 10² 10² 10² 10² -2000 ີ 5-2200 -2400 -2600 10⁰ -2800 10-2 -3000 -3000 -2500 -2000 -1500 -1000 0 500 1000 1500 2000 -500 <---- Beam direction [cm]

Booster extraction septum - Abnormal loss condition

Booster extraction septum - Abnormal loss condition

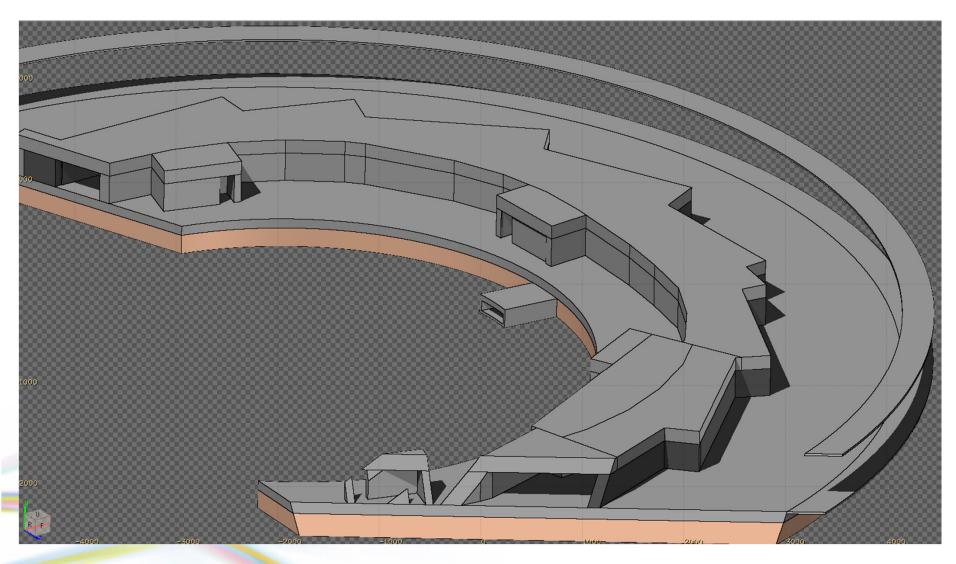



BTS Faraday cup – abnormal loss

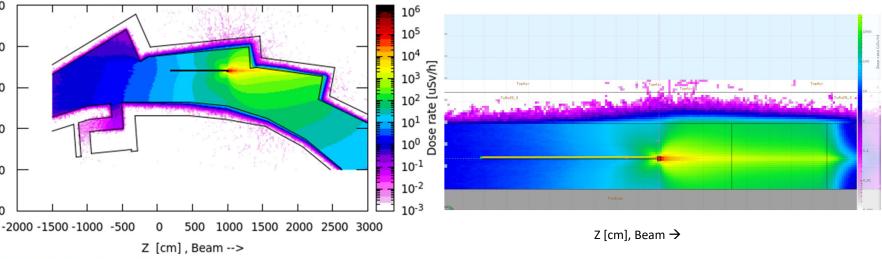
Loss Location	Losses e ⁻ /s	Dose rate outside shielding µSv/h	Comments
BTS Faraday cup	2.0 1011	<100 SW & R	local lead shielding (~24 mm) shall be placed around the Faraday cup.

SW = Side wall; R = Roof

Access to the roof will be restricted in the above conditions and only possible under a Permit to Work (PTW) procedure that ensures the Booster is off.



Storage ring


Storage Ring – normal loss

Loss Location	Losses e ⁻ /s	Dose rate outside shielding µSv/h	Comments
Cell12 Collimator	4.2 10 ⁸	<0.02 [SW & R]	No additional controls are necessary for the hall
			area.
	<i>,</i>		

SW = Side wall; R = Roof

DLS2: Cell12 at collimator location for normal loss

DLS 2: Cell12 Roof dose distribution

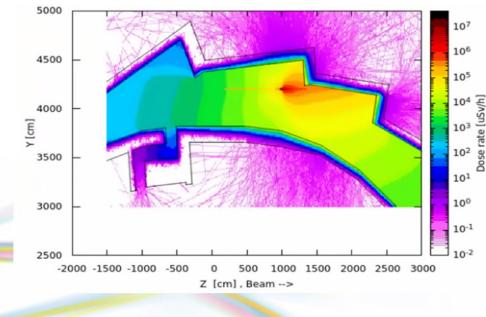
5000

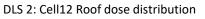
4500

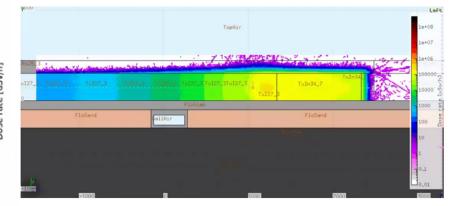
(1000 (E) → 3500

3500

3000


2500

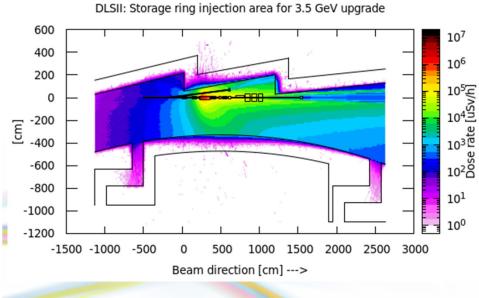

Storage Ring – abnormal loss


	shielding µSv/h	
Cell12 Collimator 2.0		This would not require additional controls for the hall area. No additional roof controls are needed as the dose rate is below 7.5 μ Sv/h, and such conditions will not persist for a very long period.

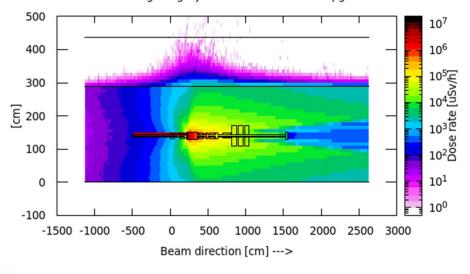
SW = Side wall; R = Roof

DLS 2: Cell12 side wall dose distribution in an abnormal loss

Z [cm], Beam ightarrow



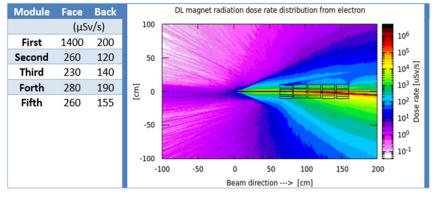
Storage ring: Injection area


The shielding is thicker in the injection area compared to other areas.

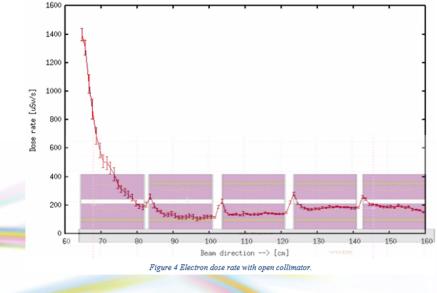
Loss Location	Losses e ⁻ /s	Dose rate outside shielding µSv/h	Comments
Injection Area	4.2 10 ⁸	<0.02 [SW & R]	No additional controls are necessary for the hall area.
Injection Area	2.0 1011	<0.5 [SW] <2.5 [R]	No additional roof controls are needed as the dose rate is below 7.5 μSv/h, and such conditions will not persist for a very long period.

SW = Side wall; R = Roof

DLSII: Storage ring injection area for 3.5 GeV upgrade

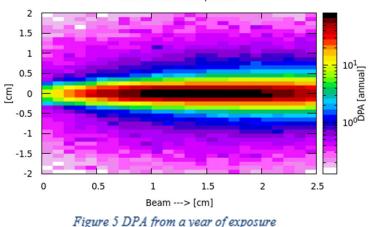


Ring component exposure dose /damage


Permanent magnet dose

Collimator damage

Table 1 DL magnet Dose distribution from electron with collimator open.


Electron with closed collimator average radiation dose rate/s at Right side Sm₂Co₁₇ magnets

RadSynch 2023

Displacements per atoms Energy depositi 3x10 1.4x10 1.2×10⁴ 2.5×10⁻¹¹ 1×10⁴ 2×10⁻¹ 8x10⁴ 1.5×10 PA 6x10⁸ 1x10-1 4x10⁴ 5×10⁻¹ 2x10⁸ 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.11 0.12 0.13 0.14 0.15 0.0 0.09 0.1 0.16 W denth [cm] Collimator depth [cm]

Figure - Total energy deposition by electrons over the target depth (left) and FLUKA DPA for eloss condition – electron atomic displacements as a function of the target depth (right) at collimator open position.

W collimator close positon

Future work

Monte Carlo Models

- FLUKA MC activation calculations for Diamond-I decommissioning.
- Radiation dose assessment for the ring components for Diamond-II.

Finalise Beamline Shielding Calculations

FLUKA calculation for beamline optics hutch shielding.

Environmental impact assessment

Required by regulators for new facilities. This will assess the activation of ground water, cooling water and air etc.

Diamond II machine upgrade

Questions

Email: <u>sanjeev.faruk@diamond.ac.uk</u> DLS website: <u>https://www.diamond.ac.uk</u>

Acknowledgement:

FLUKA team & forum

DLS Accelerator & Design Engineering team

References:

- "The FLUKA code: Description and benchmarking" G. Battistoni, S. Muraro, P.R. Sala, F. Cerutti, A. Ferrari, S. Roesler, A. Fasso`, J. Ranft, Proceedings of the Hadronic Shower Simulation Workshop 2006, Fermilab 6--8 September 2006, M. Albrow, R. Raja eds., AIP Conference Proceeding 896, 31-49, (2007)
- "FLUKA: a multi-particle transport code" A. Ferrari, P.R. Sala, A. Fasso`, and J. Ranft, CERN-2005-10 (2005), INFN/TC_05/11, SLAC-R-773
- Gas Bremsstrahlung Considerations in the Shielding Design of the Advanced Photon Source Synchrotron Radiation Beam Lines, Nisy E. Ipe, Alberto Fasso, SLAC–PUB–6452.
- Impact of gas bremsstrahlung on synchrotron radiation beamline shielding at the advanced photon source, Nisy E. Ipe, Alberto Fasso SLAC–PUB–6410,

