RADSYNCH 2023 ESRF, 30 May – 2 June 2023

The ESRF Extremely Brilliant Source (EBS) Paul Berkvens, Patrick Colomp

THE ESRF EXTREMELY BRILLIANT LIGHT SOURCE (EBS)

1. Introduction

- 2. Overview of commissioning
- 3. Validation of shielding calculations
 - 1. Storage ring
 - 2. Beamlines
- 4. Radiation damage in storage ring tunnel

THE ESRF EBS STORAGE RING

	Parameter	Existing Lattice	New Lattice	
	Energy, E [GeV]	6.04	6.04	
	Circumference, C [m]	844	844	
	RF frequency, <i>fRF</i> [MHz]	352	352	
	Beam current [mA]	200	200	
	Horizontal Emittance [pm ·rad]	4000	150	
	Vertical Emittance [pm ·rad]	4	3	
	Beta at ID center, βx , βy [m]	37.6 , 3.0 (high β) 0.35 , 3.0 (low β)	3.6 , 3.6	
	Beam size at ID center, σx , $\sigma y [\mu m]$	413 , 3.9 (high β) 50 , 3.9 (low β)	24,3.3	
Radsynch	Beam div. at ID center, $\sigma x'$, $\sigma y'$ [µrad] h_2023 – 30 May 2023 - The ESRF Extremely Billiant Source (EBS) - P. Berkvens	10 , 1.3 (high β) 107, 1.3 (low β)	6.4 , 0.91	

THE ESRF EBS STORAGE RING

Main challenge:

e⁻ losses ×10

use existing storage ring shielding

→ two dedicated beam loss collimators + local shielding

COL_HO2a I		Lifetime (h)		Beam losses (e/s)	
Mode	Stored beam (mA)	ESRF 1	EBS	ESRF 1	EBS
Multi-bunch	200	45	19.3	2.2 10 ⁷	5.1 10 ⁷
16 bunch	92	16	1.8	2.8 10 ⁷	2.5 10 ⁸
4 bunch	40	9	1.2	2.2 10 ⁷	1.6 10 ⁸

Distribution of beam losses along the storage ring lattice

THE ESRF EBS STORAGE RING

FLUKA + Beam loss phase space files

Number of people

Radsynch_2023 - 30 May 2023 - The ESRF Extremely Billiant Source (EBS) - P. Berkvens

STORAGE RING AND BEAMLINE COMMISSIONING

STORAGE RING AND BEAMLINE COMMISSIONING

The European Synchrotron | ESRF

STORAGE RING AND BEAMLINE COMMISSIONING

CONSERVATIVE ASSUMPTIONS OF SHIELDING STUDY

EBS shielding study:

Maximum dose rates: 16-bunch: 92 mA, 1.8 h lifetime.

Safety envelope: 1200 μ C injected in storage ring per year.

ESRF

The European Synchrotron

CONSERVATIVE ASSUMPTIONS OF SHIELDING STUDY

CONSERVATIVE ASSUMPTIONS OF SHIELDING STUDY

VALIDATION OF SHIELDING STUDY: STORED BEAM DOSE RATES

Typical measurement by one of the neutron monitors on the roof of the storage ring during the period from 1 August to 6 October 2020. Red curve: monthly dose integrated by the monitor. Grey curve: stored beam current.

Radsynch_2023 - 30 May 2023 - The ESRF Extremely Billiant Source (EBS) - P. Berkvens

number of 6-days measurements

net effective dose rate (μ Sv·h⁻¹) Distribution of 6-day-period measurements during USM, as a function of the average net effective dose rate during the 6 days. Points: measurements – Curve: Gaussian fit with μ = **1.1 nSv·h⁻¹** and σ = 3 nSv·h⁻¹.

VALIDATION OF SHIELDING STUDY: COLLIMATOR CELLS

Stored beam dose rates on tunnel roof - collimator cells Conditions: 92 mA stored beam, 1.8 h lifetime

Neutron dose rate at detector position: $0.05 \ \mu Sv \cdot h^{-1}$ \rightarrow 196 mA, 24 h lifetime: **0.0082 \ \mu Sv \cdot h^{-1}**

 \rightarrow 133 h: integrated dose = 1.063 µSv

 \rightarrow 144 h: integrated dose = 1.150 μ Sv

VALIDATION OF SHIELDING STUDY: COLLIMATOR CELLS

Integrated dose on tunnel roof during injection - collimator cells Conditions: full 200 mA injection, 50 % injection efficiency

Neutron dose at detector position: 0.045 μ Sv

- \rightarrow 1st week, integrated dose due to injection losses: **0.21** μ **Sv**
- \rightarrow 2nd week, integrated dose due to injection losses: **0.22** μ **Sv**

VALIDATION OF SHIELDING STUDY: COLLIMATOR CELLS

FLUKA model			Measurements		
	1 st week	2 nd week	1 st week	2 nd week	
background (0.11 nSv·h⁻¹)	1.463 μSv	1.584 μSv			
dose during decay	1.062 μSv	1.150 μSv			
dose during injection	0.210 μSv	0.217 μSv			
total neutron dose on tunnel roof	2.735 μSv	2.951 μSv	collimator 1: 3.05 μSv collimator 2: 2.56 μSv	collimator 1: 2.67 μ Sv collimator 2: 3.24 μ Sv	
			average: 2.81 μ Sν	average: 2.95 μSv	

VALIDATION OF SHIELDING STUDY: STORED BEAM DUMPS

Beam scraping with 1st collimator

VALIDATION OF SHIELDING STUDY: STORED BEAM DUMPS

Integrated dose on tunnel roof during beam dump - collimator cells Conditions: 200 mA dump, 50 % loss on each collimator → expected dose when scraping 200 mA beam with a single collimator: **1** μ**Sv**

186 mA, 0.96 μ Sv \rightarrow **1.03** μ Sv for 200 mA dump

61 mA, 0.31 μ Sv \rightarrow **1.02** μ Sv for 200 mA dump

VALIDATION OF SHIELDING STUDY: STORED BEAM LOSS ON CLOSING VACUUM VALVE

BEAMLINE COMMISSIONING

FLUKA calculations

- Use of generic model for optics hutches.
- Shorter than standard hutch \rightarrow conservative results.

Insertion device beamlines

- No change in synchrotron radiation source.
- Length straight section (dipole to dipole) divided by two.
- Straight section ID vessel reused \rightarrow conditioning done.

Bending magnet beamlines

- Change of synchrotron radiation sources (short bends, 2-pole or 3-pole wigglers)
- Increased gas-bremsstrahlung source.
- Freeways next to BM optics hutches interlocked.

Generic FLUKA model of optics hutch

BEAMLINE COMMISSIONING: ID BEAMLINES

Effective dose over 4 h, measured with ionisation chambers outside three optics hutches: ID06 (top), ID20 (middle) et ID02 (bottom). Blue curve: integrated dose; grey curve: stored beam current (20/08 to 15/10/2020).

Effective dose rate distribution due to gas-bremsstrahlung beam losses in a horizontal plane at beam height. 200 mA stored beam, 500 A·h conditioning. Top: total dose – Bottom: neutron dose.

BEAMLINE COMMISSIONING: BM BEAMLINES

Effective dose over 4 h, measured with ionisation chambers outside three optics hutches: BM02 (top), BM20 (middle) and BM25 (bottom). Blue curve: integrated dose; grey curve: stored beam current (20/08 to 15/10/2020).

Measured net dose values between 0.01 and 0.05 μ Sv/h for all BM beamlines (inside interlocked freeway). Calculated values between 20 % and 100 % higher than measured ones.

Radsynch_2023 - 30 May 2023 - The ESRF Extremely Billiant Source (EBS) - P. Berkvens

Origin of problem: relative transparency of Al for X-rays < 60 keV

5 mm min Scattered synchrotron radiation ratio transmission 5 mm Al / 2 mm Fe produced along 5 m long insertion 100000

device vacuum vessels.

Radsynch_2023 - 30 May 2023 - The ESRF Extremely Billiant Source (EBS) - P. Berkvens

The European Synchrotron | ESRF

Radsynch_2023 - 30 May 2023 - The ESRF Extremely Billiant Source (EBS) - P. Berkvens

MANY THANKS FOR YOUR ATTENTION

