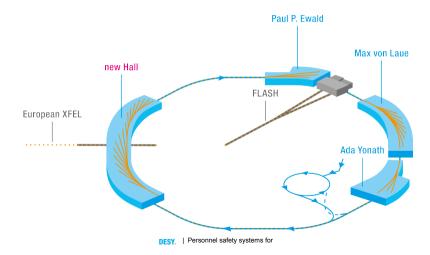
Personnel safety systems for PETRA IV

Planed 4'th generation synchrotron light source @ DESY

Michael Dressel Hamburg, May 29, 2023

- > PETRA IV Overview
- > PSSs for PETRA IV
- > SF: Safety functions in general
- Legal requirements
- > MFS: Management of Functional Safety
- Example >


PETRA IV project overview

PETRA IV.

- > Upgrade PETRA III to PETRA IV
- > Ultra-low-emittance source
- > Hard x-rays up to 10-50 keV
- > High brightness in excess of 10²² phot./mm/mrad/0.1%BW
- > 6 GeV electrons, in 2.3 km circumference PETRA tunnel

PETRA IV overview

PETRA IV complex

Number of interlock areas, ZZ- and other doors, PLC systems and PC of the three accelerators

	Linac	Booster	PETRA	total
interlock-areas	2	2	6	10
ZZ-doors	3	4	17	24
other doors	4	16	15	35
PLC systems	1	1	2 (interlock, and ZZ)	4
PC	1	3	5	9
el. cabinet (el. room)	2	3	8	13
el. cabinet (doors)	5	19	24	48

ZZ: Procedure with safety key for temporal access without losing search state

DESY. | Personnel safety systems for

PETRA IV beam lines

Number of beam-lines, hutches, main- plus back-doors in the PETRA 4 experiments halls

	PXN	MvL	PXE	PXW	total
beam-lines	3	11	4	13 (+5)	36
optics, hutches	3	15	4	13 (+5)	40
exp. hutches	6	24	9	23	62
(main+back) doors \sim	11	60	13	50	134
PLC system and PC	3	11	4	18	36
el. cabinet (el. room)	1	2	1	2	6
el. cabinet (beam-line)	3	11	4	18	36
el. cabinet (door)	9	39	13	41	102

Usual safety function structure

Sensor - Logic - Actuator

Example for requirements on PFH_d of a sub system and the overall SF, a.o.:

- > sub-system and overall architecture
- > DC and test interval
- > CCF
- > failure rate λ_d of element
- > useful lifetime (commonly: 20 years)
- > SIL / PL

PFH_d: Probability of dangerous failure per hour DC: diagnostic coverage CCF: common course failure SIL / PL: safety integrity level, PL: performance level

DESY. | Personnel safety systems for

Some typical safety sensors

- > door contacts
- > key locks or switches (for door latching, ZZ, beam permission)
- > beam shutter position switches
- > magnets currents or position
- > emergency-off switches
- > light barrier

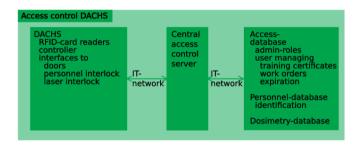
- > Safety PLC for beam permission
- > Safety-relays for emergency-off
- > Safety diagnostics
- Safety network

Some typical actuators

- contactors (circuit breaker) of rf-modulators >
- contactors of hv power supplies >
- safety signals to solid state amplifiers >
- switches of getter pumps >

> . . .

PETRA IV functions


Components within safety functions and related supplementary functions

Safety-functions				
Sensors positions doors beam-shutters safety-keys safety (key) switches emergency-stop light barriers interlock connections	Safety- network	Logic Safety- CPU	Safety- network	Actuators RF-system Solid State Amplifiers modulator conductors Magnet power supplies conductors HV vacuum pumps conductors interlock connections
		Con	trol-net	
Supplementary functions				
Tableaux TWT, SBT, MWT, Entry, Exit key-control door locking, e-open DACHS interface warning lamps search support audio equipment intercom, video	Field- bus Control- net Audio- net DESY. P	Central PC Field PCs	Control- net	feedback evaluation Maintenance logging archiving

PETRA IV access control, DACHS

For authentication

Legal requirements

- > Machinery Directive 2006/42/EC
- > German regulations for occupational safety (i.e. TRBS 1115)
- > Both refer to the same standards: ISO 12100, ISO 13849, EN 62061 (TRBS1115 also to IEC 61511)
- > Top-Down Procedure
- > General risk assessment and MFS if safety functions required
- > Management of Functional Safety:
 - organisational responsibilities
 - qualification and competence
 - specification
 - verification
 - examination
 - evaluation

Risk assessment in General

> Risk assessment

In case measures are required for risk reduction:

- Safety concept / independence >
- > Appropriateness / Effectiveness
- > Reasoning / Evaluation
- > Traceability / Documentation

Basic MFS goals

MFS must make sure that

- > methods,
- > work flows (processes) as well as,
- > the safety systems

reach the following goals permanently:

- > appropriateness
- > effectiveness
- traceability
- > maintainability

Top-Down Procedure

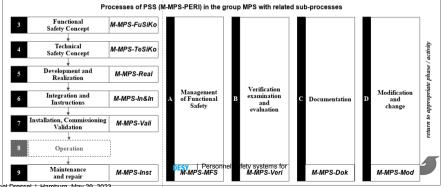
Systematic identification of all hazards of the overall system.

- Essential hazards of the overall system are evident from start, e.g. accelerators are to deliver electron beams and undulators are to deliver photon beams with high brightness. This already puts demands on beam shutters.
- > Additional hazards occur by combining subsystems. E.g. RF-system produces additional ionizing radiation when combined with cavities.
- Controlling these hazards puts requirements to subsystems that can not be realized within the subsystems alone. E.g. SIL-requirement on shutting off the modulators.
- Hazards of the overall system and hazards occurring by combining subsystems generate additional requirements on the overall system and the subsystems in turn. These should be added as soon as possible to the requirements of the subsystems.

Functional Safety Realization

Two classes of requirements

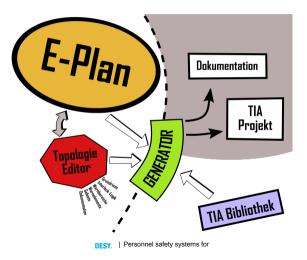
In order to meet the required SIL_r or PL_r: Functional Safety demands both: Systematic Safety Integrity prevent systematic failures robust process robust design


Higher safety levels put increasing demands on:

management reliability planing diagnoses documentation architecture quality failure modes V&V redundancy independence

DESY. | Personnel safety systems for

MFS process within group MPS

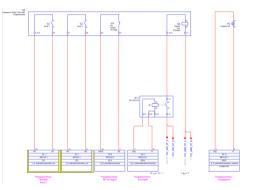


Page 18

PETRA IV | Michael Dressel | Hamburg, May 29, 2023

Generator

Code generation based on self verified/qualified modules



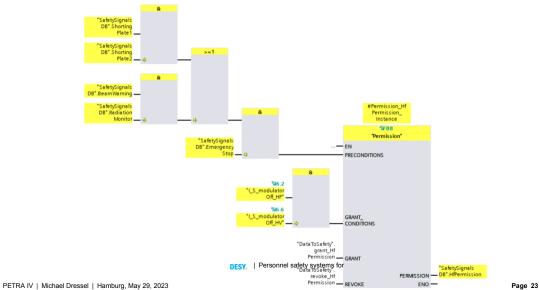
Electrical construction

Electrical cabinets, wiring, cabling

- Create and use modules in electrical construction
- > Export construction (aml data)
- > Use aml in the code generator

SOFTEMA

Matrix method tool from occupational insurance. Supports systematic documentation from specification to validation.


	C	D	E	r	G	Н		J	ĸ	-
1										
2										
3										
4										
5	Symbol	Adresse	Datentyp	_Modul	Aktiv_in_C+E	Aktiv	Sperre	SW-Verif.	IO-Test	_0
6	relevant	nicht relevant (_Nr. übertragen)	relevant			relevant	relevant	relevant	nicht relevant (immer OK)	Re (n
7										
8	REVOKE	11	Bool			- Aktiv	x	ОК	ок	0
9	PRECONDITIONS	12	Bool		Aktiv	Aktiv	×	ок	ок	0
10	GRANT	13	Bool			- Aktiv	x	ок	ок	0
11	GRANT_CONDITIONS	14	Bool			- Aktiv	x	ок	ок	0
12										Т
13	PERMISSION	01	Bool		Aktiv	Aktiv	x	ок	ОК	0
14										Т
15							x	ок	ок	0
16							Datum	09.02.2023	09.02.2023	09
17							Name	Alessandro Kropmanns /	Alessandro Kropmanns /	
18							Signatur	Stefan May 576DBFD8	Stefan May 576DBFD8	SI 57
19										
20							Datum	13.02.2023	13.02.2023	13
							Prüfen1	Andreas Cords	Andreas Cords	A
21										
22 23 24				DESV	Personnel safety systems for		Datum			
23				DLUI.			Prüfen2			

Generator input snippet

```
<permission id="HfPermission">
  <preconditions>
    <0r>
      <and>
        <internal>ShortingPlate1</internal>
        <internal>ShortingPlate2</internal>
      </and>
      <and>
        <internal>BeamWarning</internal>
        <internal>RadiationMonitor</internal>
      </and>
    </or>
    <internal>EmergencvStop</internal>
  </preconditions>
  <grantconditions>
    <input>I S modulatorOff HF</input>
    <input>I S modulatorOff HV</input>
  </grantconditions>
</permission>
              necy | Personnel safety systems for
```


Generated code networks

- > The PSS for PETRA IV aims to be safe and compliant with the safety standards.
- > Processes are developed and implemented to manage functional safety.
- Software tools are used to support the documentation and verification from specification to validation.
- Modularization and automated project generation is developed in order to deal with the large variability of accelerators and experiments safety systems.

DESY. | Personnel safety systems for

