Operation of a Fluorescence Light Based Burn Through Monitor System at the European XFEL

Clement W.*, Leuschner A.*, Zander S.*, Gerdt S.-L.*, Liang T.*, Voige M.*, Stein O.*, Ansari Z.1

^{*} Deutsches Elektronen-Synchrotron DESY
¹ European XFEL GmbH

RadSynch23, Grenoble, May/June 2023

Outline

- European XFEL
- Requirement for a Burn Through Monitor System
- Fluorescence Light Based BTM System
 - Fluorescence Light
 - Detectors
 - Safety Related Diagnostic
- Test Measurements
- Operation of the BTM System

European XFEL Site

Accelerator

European XFEL Key Parameters

Superconducting LINAC, 10 Hz			
Length	km	2.1	
max. Electron Energy	GeV	17.5 (20.0)	
max. Electron Power	MW	1.2	
FEL beam			
Flashes per second	1/s	27.000	
Photon Energy	keV	0.3 24	
max. Pulse Energy	mJ	3.6 11	
Pulse Duration	fs	< 100	
max. Photons/Pulse		10 ¹²	

Status Quo

History

- Start commissioning: Oct. 2016
 - ► First lasing: May 2017
 - ► First users: Sept. 2017
- 4 years operation with strongly limited beam parameters 3...9 W ("operation constraints")

Today

- 7 experimental stations in operation
- Operation with 40 W max. photon power

Screenshot XFEL Status Info System, May 9, 2019

The FEL beam must be stopped ...and be detected if stopping fails

- Material tests proof capability of focused FEL beam to drill through any solid material (see Ted's talk)
- Stopping the beam safely is crucial to protect personnel

SEM picture of B4C hole with 20 µm beam @ FXE, 9 keV, 1 mJ

European XFEL

- Avoid critical beam conditions at safety components (see Zunaira's talk)
- Monitor positions where the beam mustn't be and switch off beam immediately if beam burnt through (this talk)

Burn Through @SQS, 0.7 keV, 50 buches/pulstrain, 10 Hz

Detectors for a Burn Through Monitor System

Wavelength (nm)

Detection System and Continuous Self-Test

Safety Related Diagnostic Function

- The safety function of the BTM system must be extremely reliable
- Complex detectors and electronics make it nearly impossible to build up a safety related BTM system
 - Two separated alarm systems
 - Two different detectors for the purpose of diversity
- Continuous self test with LED light ensures a completely independent diagnostic function
- As the LED trigger and the evaluation of the response signal is done by a safety PLC (SIL 3) the diagnostic function itself is safety related

BTM Detector I: Insert

"**Inserts**" behind absorbers but in front of the beamshutters detect fluorescence light in case of a **burn through** of the absorber

Absorber and beamshutter (by Fan Yang, EXFEL and Reuter company)

European XFEL

Boards

Absorber TD 6

BTM Detector II: Airbox

"**Airboxes**" in front of the graphite beamstops at the end of experimental hutches detect fluorescence light in case of a **burn through** of the technical beamstop.

Airbox SPB hutch

Opened airbox

Executed test measurements with BTM detectors: Overview

Measurement	Values	Result
Fluorescence spectra	0.77 keV - 14 keV	Spectra look similar
Response unfocused/focused beam	1 mm → 20 µm	Decrease of signal unfocused/focused by a factor of 2-3
Response as function of photon energy	0.77 keV - 20 keV	Corresponds to mass attenuation coefficient in dry air
Response as function of pulse energy	< 0.1 10 mJ/pulse	Signal scales linearly as long as detectors are not saturated
Response as function of # of pulses	1 400 pulses/bunch train	Signal scales linearly as long detectors are not saturated

Test set-up @ SQS

False Alarm by Bremsstrahlung in Front of BTM TD6

Use of screen in SASE 2 produces Bremsstrahlung

BTM "TD6" location at about 50 m distance

Bremsstrahlung generates fluorescence light at BTM (absorber open)

PPS alarm occured

Switch-off time

- time delay between BTM signal and dump power drop = 2.3 s
 - ~ 1 s integration time for safe determination of the detection threshold
 - 1...2 s delay PPS relais chain and modulator switch off time

Three Years of XFEL Operation with BTMs

- Good news: No burn through yet!
- 19 BTMs in operation since 01/2020
 - ~ 5 Million test pulses so far
- About 20 false alarms
 - Diagnostic alarms
 - Decrease of detector response or LED light
 - Missing test pulses
 - Hardware failures
 - Bremsstrahlung
 - Last alarm in 10/2022 !
 - Measures
 - Regular check of test pulse energy
 - Optimization of hardware
 - Some shielding added

Screenshot BTM System HMI

_ 17

Thanks for attention!