

Radiation Shielding of Beamlines of APS-U

Sunil C, Radiation Physicist **APS-U, ESH-RPP**

Radsynch, ESRF 30 May-2 June 2023

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

APS-U

Number of sectors: 40 Beam Energy: 6 GeV Imaging 8-ID: XPCS (XSD) Beam Current: 200 mA Spectroscopy 7-ID (XSD) Max. single bunch current: > 4.2 mA 6-ID (XSD) Circumference: 1103.608 meters 5-ID (DND-CAT) 4-ID: POLAR (XSD) Polarization Modulation Main RF frequency: 352.055 MHz Spectroscopy Minimum bunch spacing: 11.36 ns 48 to 324 uniformly-spaced bunches Space available for ID hardware: 5.4 meters/sector Horizontal on-axis swap-out injection

8 new beamlines, 15 enhanced beamlines

APS to APS-U

APS-U storage ring lattice

Each sector contains 33 arc magnets; 27.6 meters/sector

As of April 24, APS has entered the dark time

Tunnel is empty!

Shielding philosophy of APS

- Ensure shielding of all enclosures are adequate with the strongest source for worst case scenarios
- Identify an ID that can serve as the bounding source
 - Superconducting and planar undulators in APS-U
- Make exceptions for special beamlines
 9-ID-CSSI, 19-ID-ISN
- Monochromatic beam enclosures are assumed to be pink beam enclosures
- Assume 0.1% BW for monochromatic beams
 Overly conservative use for higher harmonics
- Target dose: 0.5 mrem/h [10CFR835]

Difficult to augment the shielding of the enclosures.

19-ID-ISN In Situ Nanoprobe in the long beamline building

6

Synchrotron radiation shielding

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

APS shielding and assumptions used

Station Type	Upstre	am	Late	eral	Roo	f	Down	istream	
ID White	1	9	19	9	12		50 (100	locally)	
BM White	8	3	8	}	6		9 (24 l	ocally)	
ID Pink	1	0	1(0	6			12	
BM Pink	6	5	6)	4			7	
	All dime	nsions in	mm						
Station type	Bean	n transp	ort sce	enari	os		Shutter	/stops	
	Air (SR)	Solid (SR)	Soli	id (GB)		W	Pb	.1%bw
ID White	12	21	L		45		180	300	p/s/0
BM White	6	11	L		12		180	300	
ID Pink	8	12	2		-		60		

7

- PHOTON for SR shielding
- XOP for source term for a wiggler
 - Artificially increased by 10x
 - 0.1% BW for DCM beams
- EGS for GB shielding
 - 15 m (ID), 23 cm (BM), 1nT pressure
 - 7 GeV, 300 mA

5

BM Pink

21

Sources of SR in APS-U

APS-U safety envelope for SR shielding 6.3 GeV 220 mA

Period (cm)	K _{eff}	B _{eff} (T)	N	Ec (keV)]	
1.35	0.389	0.309	350	8.2		
1.40	0.436	0.333	338	8.8		
2.10	1.309	0.667	224	17.6		
2.30	1.610	0.749	206	19.8		
2.50	1.914	0.820	188	21.6		
2.70	2.282	0.905	174	23.9		
2.80	2.459	0.940	168	24.8		_
3.00	2.664	0.951	158	25.1	U2.8	
3.30	2.891	0.938	144	24.8	U3.0	
1.65	1.697	1.101	230	29.1	SCU16	65
1.85	2.342	1.356	140	35.8	SCU18	35
12.50	5.266	0.451	36	11.9		
12.50	3.865	0.331	36	8.7		

Comparison of sources at APSU Safety Envelop 6.3 GeV 220 mA

U.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Shielding methodology for APS-U

- White beam from XOP using Wiggler approximation (for ID)
 - Agrees well with STAC8 source spectrum
- All solid scattering calculations carried out by STAC8
 - Air scattering calculations using FLUKA/PHITS
- $4k/\gamma \ge 1/\gamma$ and 2 mm $\ge 2mm$ at 25 m apertures for ID
- 2.7 mradH fan for BM
- Pink beam from Pt coated mirror at 1 mradian
 - Nominal angles would be 2-3 mradian
- Reflectivity is calculated by STAC8
 - Matches very well with XOP data
- Mirror roughness is ignored
- Polarization is ignored
- Effective dose is estimated using STAC8, FLUKA and PHITS
 - XOP white beam, STAC8 pink beam as inputs for FLUKA, PHITS
- All GB calculations using FLUKA

Photon energy (keV)

Monochromatic beam DCM

- Monochromatic beam extracted from white beam
- BW of fundamental energy can be as high as 0.1%
 - enhanced BW expected from crystals that are asymmetric, imperfect, strained or bent Laue
- Bandwidths (BW) from XOP calculations
 - Both crystals are assumed to be cryogenically cooled
 - Lower the crystal temperature, higher is the Debye-Waller factor and wider is the bandwidth
- Can be calculated by*

 $\frac{\Delta E}{E} = \left(\frac{\lambda}{\sin\theta}\right)^2 \frac{r_e C F_H e^{-m}}{\pi V}$

λ is the wavelength of the photon, θ is the angle of scattering, r_e is classical electron radius, C is the polarization factor (assumed to be 1.0 here), F_H is the crystal structure factor taken to be 4f, where f is the mean atomic scattering factor as tabulated in the International table for crystallography, e^{-m} is the
 temperature factor and V is unit cell volume of a Si crystal taken as 160.1 Å³. on synchrotron radiation, North Holland Pub. Co (1983)

Reflection	∆E/E (eq)	ΔΕ/Ε (ΧΟΡ)	dE/E
Si(111)	1.17E-04	1.37E-04	1.00E-03
Si(333)	7.75E-06	8.54E-06	1.11E-04
Si(444)	4.66E-06	5.22E-06	6.25E-05
Si(555)	3.00E-06	1.63E-06	4.00E-05
Si(777)	3.74E-07	4.50E-07	2.04E-05

dE/E is used as DCM BW for shielding

• 8-55 times higher than the $\Delta E/E$

XOP data; courtesy; L. Berman (NSLS-II) dE/E data: Courtesy, D. Haeffner, APS

Double Multilayer Monochromator in APS-U

- APS-U will use Double Multilayer Monochromators in a few beamlines
- Reflectivity can be very high for higher energies
- No straightforward way to find the worst case
- Calculations are done on a case-by-case basis

Effect of source end point

Reduced source strengths

- With a 2mm x 2mm exit slit at 25m, the source strengths have reduced
- Exit mask will then be a credited control

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Required and recommended Pb thicknesses

Enclosure	Distance	Pb thickness	SCU	185	SCU	165	U2	2.8
	cm	mm	Req	Rec	Req	Rec	Req	Rec
FOE Lateral	70	19	30	39	23	30	17	23
FOE roof	100	12	28	36	21	28	16	21
FOE d/s wall	100	50 (100)	92	110	70	85	54	66
PBE Lateral	70	10	10	13	10	12	9	11
PBE Roof	100	6	10	13	9	11	9	11
PBE d/s wall	100	12	36	46	28	36	22	28

All sources with 2mm x 2mm exit slit

Req: Required thickness to achieve 0.5 mrem/h Rec: Recommended thickness to achieve 0.05 mrem/h

STAC8, FLUKA and PHITS results; pink beam d/s wall

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

10

Mirror angle and roughness

Not worst case			Worst case
Mirror Angle	STAC8	FLUKA	STAC8
1.0	0.48	0.2	37.0
2.0	0.02	0.01	3.4
3.0	0.005	0.003	0.4

Solid target in beam transport sections

Location	Pb	SCU185	SCU185	SCU165	U2.8	U3.0
		Wide aperture		2 mm x 2m	m aperture	
	mm		mrem/h			
ID WBT	21	1445*	916	99	10	11
ID PBT	12	26	12	4.5	1.5	1.5

19

Pb thickness required to get 0.5 mrem/h

Source	WBT	PBT
SCU185	97	18
SCU165	88	15
U2.8	29	13
U3.0	30	13

W(P)BT: White (Pink) beam transport

Dose and spectrum from air scattering

Dry air in 200 m long 10 cm ID transport pipe with SCU185 wide aperture as source

Similar shape was observed in an air-scattering experiment

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Dose from air scattering; SR sources

Dose (mrem/h) due to SCU185 wide aperture SR scattering in an air column

Configuration	Distance (cm)	Pb (mm)	FLUKA	PHITS
ID WBT	5.0	21 (For solid target)	0.95±0.01	1.04 ± 0.08
ID WBT	5.0	12	51.9±0.2	52.9±1.6
ID PBT	5.0	8	0.15	0.13

22

Source	Effective dose (mrem/h)
SCU185	29.4
SCU165	3.8
U2.8	0.4
U3.0	0.4

FLUKA results for 12 mm Pb shield (WBT) at 5 cm with 2mm x 2mm apertures sources

Vacuum interlocks/radiation monitor will be installed to limit the duration of loss of vacuum accidents

Dose outside shutters/stops with SR source

- All shutters are redundant
 - With 18 cm of W or 30 cm Pb for ID white beam, dose rates are less than 0.05 mrem/h with SCU185 wide aperture source
 - For both shutters and stops
- Stationary stops are not redundant but are under configuration control
- SCU pink beams require more than the recommended beam stop thicknesses
- With planar undulators with 2mm x 2mm aperture, 60 mm W keeps the dose rate below 0.05 mrem/h

Dose outside ID pink beam stops (60 mm W)

Source	Dose (mrem/h)		
SCU185	46		
SCU185	29	Mith Danse - During an estimate	
SCU165	1.4	with 2mm x 2mm aperture	
U2.8	0.06		

Conclusion and recommendation on SR shielding

- STAC8 results are ~2.0-2.5 times higher than FLUKA/PHITS results
- For ID beamlines
 - Current shielding is inadequate for use of SCU 1.85 cm period length as the bounding source
 - Use U2.8/U3.0 with 2 mm x 2mm exit slit at 25 m $\,$
 - Analyze downstream walls to estimate additional lead panel thickness
 - Superconducting undulator beamlines will be analyzed separately
- For BM beamlines
 - Analyze downstream walls (for both white and pink) to estimate additional lead panel thickness
- No solid targets in the beam transport sections
- Install vacuum interlocks to minimize duration of vacuum excursion, or area radiation monitors to close shutters

Gas Bremsstrahlung in ID beamlines

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

GB in ID FOE

Enclosure	Distance (cm)	Pb shield (mm)	GB dose mrem/h
FOE lateral wall	70	19	0.9
FOE roof	100	12	0.8
FOE d/s wall (local)	100	100	27
FOE d/s wall	100	50	335

Beam transport sections

Solid target in White Beam Transport

Location	Pb (mm)	Dose (mrem/h)
ID WBT	21	84.1±3.8
ID WBT	45	23.3±0.2
A		for S for C

Air in White Beam Transport

Location	Pb (mm)	Dose (mrem/h)
ID WBT	21	0.14
ID WBT	12	0.31

High Heat Load ID beamline Full geometry

28-ID, HHL, white beam beyond FOE

28-ID, HHL, white beam beyond FOE

Canted ID beamline, full geometry

Canted ID beamline

Horizontal view

Outside lateral wall

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Conclusions

- Include all radiation safety components and personal protection components in beamline radiation shielding calculations
- To keep dose rates outside the downstream walls either identify mirror configurations or add additional lead shielding

Off-normal electrons in FOE

CONCEPTION And A Conception of A Conception of Conception

Radsynch 2023, ESRF 30 May-2 June 2023

Canted ID beam line

BM beamline

Conclusions

- Particle tracking has not shown any possibility of electrons entering the FOE
- Multiple safety systems will prevent such a scenario
 - Check for the presence of stored beam in the storage ring
 - Check for energy match between booster and storage ring
 - Prohibit injection if magnets have current or voltage outside of prescribed limits

Acknowledgements

- The work at Argonne National Laboratory was supported by U.S. Department of Energy, Office of Basic Energy Sciences under contract no. DE-AC02-06CH11357
- The author gratefully acknowledges the computing resources provided on Bebop (and/or Swing and/or Blues), a high-performance computing cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory.
- Mohan Ramanathan

Ray Conley

- Brad Micklich
- Oliver Schmidt
- Diep McCormick
- Dean Haeffner
- Altaf Khan
- Dana Capatina
- Luis Diaz

- Beth Heyeck
- Mike Henry
- Luca Rebuffi
- Xianbo Shi
- Suresh Narayanan
- Sarvjit Sastry
- Jeff Klug

- Alberto Fasso
- Mahadeva Iyer
- Pradip Sarkar
- Rolf Behrens
- Yoshihiro Asano

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

