#### Top-up Operation Safety Features at the Canadian Light Source



![](_page_0_Picture_2.jpeg)

Grant Cubbon: Darin Street: Brian Bewer: HSE Manager Radiation Protection Lead Radiation Protection Specialist

![](_page_0_Picture_5.jpeg)

Canadian Centre canadien Light de rayonnement Source synchrotron

RADSYNCH2023 – ESRF, Grenoble France

![](_page_0_Picture_8.jpeg)

# OUTLINE

• Facility History

Source

- Top-Up Hazard Assessment
- Top-Up Analysis and Testing
- Regulatory Approval

![](_page_1_Figure_5.jpeg)

![](_page_1_Picture_6.jpeg)

# History

Saskatchewan Accelerator Laboratory

- 1964 high energy physics research facility
- 300 MeV LINAC in 'Old' building
  - Owned by University of Saskatchewan (on Campus)
  - 360 Hz
    - Higher power operation than CLS 1 Hz
- 1,842 m<sup>2</sup> building
  - Brick and mortar

![](_page_2_Picture_9.jpeg)

![](_page_2_Picture_10.jpeg)

![](_page_2_Picture_11.jpeg)

![](_page_2_Picture_12.jpeg)

#### Saskatchewan Accelerator Lab (SAL)

![](_page_3_Picture_1.jpeg)

![](_page_3_Picture_2.jpeg)

![](_page_3_Picture_4.jpeg)

# **Overview of Synchrotron Facility**

- Construction started 1999
  - 7.2 acre footprint
  - ~ 12,071 m<sup>2</sup> building
  - 5 levels
  - Transfer lines to bring beam
     up two floors to Booster Ring

![](_page_4_Picture_6.jpeg)

- Booster Ring ramps 250 MeV to 2.9 GeV
- 2.9 GeV Synchrotron Storage Ring
- Beamlines in 'new' section of building

![](_page_4_Picture_10.jpeg)

![](_page_4_Picture_12.jpeg)

![](_page_5_Picture_0.jpeg)

![](_page_5_Picture_1.jpeg)

![](_page_5_Picture_2.jpeg)

![](_page_5_Picture_3.jpeg)

![](_page_5_Picture_5.jpeg)

![](_page_5_Picture_6.jpeg)

#### **Electron Gun**

- 2 Stories undergound
   Former SAL
- 220 KV
- 1Hz

![](_page_6_Picture_4.jpeg)

![](_page_6_Picture_5.jpeg)

![](_page_6_Picture_6.jpeg)

![](_page_6_Picture_8.jpeg)

## LINAC

- 6 Section
- 70 or 140 nS pulse
- 250 MeV
- 1 Hz
- Energy Compression
- Linac-to-Booster (LTB)

   70 meters long
   Up two floors

![](_page_7_Picture_7.jpeg)

![](_page_7_Picture_8.jpeg)

![](_page_7_Picture_9.jpeg)

![](_page_7_Picture_10.jpeg)

## **Booster Ring**

- 250 MeV to 2.9 GeV
- 10 mA design average operating current
  - 3 to 4 mA normal
- 20 dipoles
- 28 quadrupoles
- 2 RF cavities

![](_page_8_Picture_7.jpeg)

![](_page_8_Picture_8.jpeg)

![](_page_8_Picture_9.jpeg)

![](_page_8_Picture_10.jpeg)

## Storage Ring

- 24 Dipoles
- 12 straight sections
   9 available for insertion devices
- Superconducting RF cavity
- 2.9 GeV
- 170.88 m circumference

![](_page_9_Picture_6.jpeg)

![](_page_9_Picture_7.jpeg)

![](_page_9_Picture_8.jpeg)

![](_page_9_Picture_9.jpeg)

#### Beamlines

- 22 Operational Beamlines
- 2 diagnostic beamlines
- Infrared to Hard X-ray

![](_page_10_Picture_4.jpeg)

![](_page_10_Picture_5.jpeg)

![](_page_10_Picture_7.jpeg)

![](_page_11_Figure_0.jpeg)

![](_page_11_Picture_1.jpeg)

![](_page_11_Picture_2.jpeg)

## Regulatory

- CNSC Dose Limits
  - 20 mSv/Year (NEW)
  - 1 mSv/Year (non-NEW)
  - 50 μSv/Year (Outside Facility)
- Facility Operations
  - 10 mSv/Year (NEW)
  - 1 mSv/Year accident scenario
  - <5 μSv/hour Experimental Hall</li>

![](_page_12_Picture_9.jpeg)

![](_page_12_Picture_10.jpeg)

Canadian Nuclear Safety Commission

![](_page_12_Picture_12.jpeg)

#### Hazard Assessment

- Decay Mode vs Top-up
  - 2 operational modes of injection with safety shutters open considered

![](_page_13_Picture_3.jpeg)

- Refill of storage ring after 8 12 hours of operation
- Frequent refill of storage ring (Top-up Mode)

![](_page_13_Picture_6.jpeg)

![](_page_13_Picture_7.jpeg)

![](_page_13_Picture_8.jpeg)

![](_page_13_Picture_9.jpeg)

#### Hazard Assessment

- Decay mode vs top-up
- Shutters open injection risk
- Internal Document "Top-Up Hazard and Risk Analysis"
  - Injected electrons travel down beamline
  - Beamline Shielding Inadequate
  - Storage Ring Injector Energy Mismatch
  - Poor injection efficiency

![](_page_14_Picture_8.jpeg)

![](_page_14_Picture_9.jpeg)

#### **Injected Electrons**

- Internal 'Failure Mode Analysis' using DIMAD
  - Top-Up injection under normal conditions 'safe'

![](_page_15_Figure_3.jpeg)

Figure 2. Example of plot showing at which aperture the injected beam is lost for particles launched by the shotgun injection. Plot is for no errors in the storage ring.

![](_page_15_Picture_5.jpeg)

![](_page_15_Picture_6.jpeg)

## **Injected Electrons**

- Injection Failure Modes analyzed include:
  - Kicker Failure
  - Injection orbit misalignment
  - Off energy particles
  - Dipole short circuit
- Risk extremely low further mitigated by design changes

![](_page_16_Picture_7.jpeg)

![](_page_16_Picture_8.jpeg)

#### **Accident Scenario**

![](_page_17_Figure_1.jpeg)

![](_page_17_Picture_2.jpeg)

![](_page_17_Picture_3.jpeg)

![](_page_17_Picture_5.jpeg)

# Shielding

- Shutters Open Worst Case Beamloss Scenario
  - 1 nC pulse into POE
  - 402 µSv dose per pulse (1Hz) worst case.

![](_page_18_Picture_4.jpeg)

![](_page_18_Picture_5.jpeg)

![](_page_18_Picture_7.jpeg)

# Testing

- 3 Tests Completed
  - Normal injection with shutters open
    - Compare results of Area Radiation Monitors during injection with shutters closed
  - Energy Mis-Match
    - (1%, 2%, 4%)
  - Close Vacuum valve at center of straight section
    - Walls/Roof POE
    - Wall/Top of storage ring

![](_page_19_Picture_9.jpeg)

![](_page_19_Picture_10.jpeg)

#### Test Results

- Note: Facility cleared except for commissioning personnel prior to all tests
- Normal injection:

- All POEs << 2.5  $\mu$ Sv/h

- Accident Scenarios:
  - Energy Mismatch
    - Max dose rate measured < 100  $\mu$ Sv/h
  - Vacuum Valve Closed
    - All insertion beamlines tested
    - 1.4 mSv/h max

![](_page_20_Picture_10.jpeg)

![](_page_20_Picture_12.jpeg)

#### **Top-Up Safety Features**

#### **Stored Beam Before Shutters Open Injection**

• Forward-Reverse Power Switch

![](_page_21_Figure_3.jpeg)

Beam Current Switch

![](_page_21_Figure_5.jpeg)

Fig. 1: Block diagram of the forward / reverse RF power switch system.

![](_page_21_Picture_7.jpeg)

idian Centre canadien de rayonnement ce synchrotron

![](_page_21_Picture_9.jpeg)

## **Top-Up Safety Features**

#### Injection Interlock

- Active Area Radiation
   Monitoring System
- 32 AARMS stations strategically located
- 2.5 µSv cumulative hourly dose injection interlock

![](_page_22_Picture_5.jpeg)

![](_page_22_Picture_6.jpeg)

![](_page_22_Picture_8.jpeg)

#### **AARMS** Locations

![](_page_23_Figure_1.jpeg)

![](_page_23_Picture_2.jpeg)

![](_page_23_Picture_4.jpeg)

## Defense in Depth

- Machine Protection
  - Dipole Energy Interlocks
    - Transfer line to SR1 dipole power supply (0.5%)
  - Bad orbit protection
    - Beam dumped when bad orbit detected
  - Injection Efficiency ( > 90%)
    - Was 70% initially
  - Transfer Line Collimator
    - Shielding collimator in storage ring tunnel

![](_page_24_Picture_10.jpeg)

![](_page_24_Picture_12.jpeg)

# Defense in Depth

- Radiation Protection Program
  - Shielding design
    - Accelerator and beamlines
  - Configuration Control
    - Bulk and local shielding
  - Accelerator and Beamline Lockup
  - Radiation Surveys Commissioning and routine
  - Passive Area Monitoring
  - Active Area Monitoring
  - Controlled Work Process

![](_page_25_Picture_11.jpeg)

![](_page_25_Picture_13.jpeg)

## Regulatory

 May 3, 2017: Documented safety case for Top-up forwarded to CNSC

Questions from CNSC staff resolved

 October 17, 2017: CNSC staff forwarded request to Commission Panel for resolution

#### • February 20, 2018: Licence approval received

![](_page_26_Picture_5.jpeg)

![](_page_26_Picture_7.jpeg)

# **Top-Up Operation**

- Move to Top-up Operation for User Beam complete
- No radiation dose to any workers > 1.0 mSv

![](_page_27_Figure_3.jpeg)

![](_page_27_Picture_4.jpeg)

![](_page_27_Picture_6.jpeg)

#### Merci Beaucoup!

![](_page_28_Picture_1.jpeg)

![](_page_28_Picture_2.jpeg)

![](_page_28_Picture_3.jpeg)

![](_page_28_Picture_5.jpeg)

## Shielding Design

Shielding calculations for a given dose D derived by the equation:

 $D = P \times \sum_{i} \left( \frac{H_{i}}{r^{2}} \times e^{\binom{-\rho d}{\lambda_{i}}} \right)$ 

References:

Moe, H. J. (1991). *Advanced Photon Source: Radiological Design Considerations*. Chicago, Illinois: APS Technical Note APS-LS-141 Revised.

Moe, H.J. (1997). *Radiological Considerations for the Ooperation of theAdvanced Photon Source Storage Ring – Revised.* Chicago, Illinois: APS Technical Note APS-LS-295 Revised.

IAEA Technical Report 188 (1979) - Radiological Safety Aspects of the Operation of Electron Linear Accelerators

![](_page_29_Picture_7.jpeg)

dian Centre canadien de rayonnement ce synchrotron

![](_page_29_Picture_9.jpeg)