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Motivation
How to stop a beam?

How to stop a beam?

Horizontal section

Occupied area

Occupied
area

Probably:

∼ few GeV electrons,

but does not really matter

Imagine how you would do it . . .

Use a heavy material block to stop γ

Surround it with something light to slow down fast neutrons

Optimise dimensions to reduce dose rates where needed
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Horizontal section

Occupied area

Occupied
area

Probably:

Use a heavy material block to stop γ

but keep in mind its Z to reduce (γ,n)

Surround it with something light to slow down fast neutrons

Optimise dimensions to reduce dose rates where needed
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Motivation
How to stop a beam?

Horizontal section

Occupied area

Occupied
area

Probably:

Use a heavy material block to stop γ

Surround it with something light to slow down fast neutrons

to increase σ(n,γ)

Optimise dimensions to reduce dose rates where needed
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Motivation
How to stop a beam? — Challenge

Sounds easy?

Challenge comes from the boundary conditions:

beam dumps are normally large and heavy
but this one should be small and light
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Motivation
How to stop a beam? — Boundary conditions

Vertical section

Occupied
area

<1 m

Boundary conditions

Limit dose rates in the occupied areas

both forward and lateral

Fit within the horisontal space (1 m)

Minimise weight (load on the floor)

Minimise cost and complexity
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Motivation
How to stop a beam? — Optimisation

Multi-dimensional optimisation

Parameter space

Dimensions
Materials

either heterogeneous or homogeneous

Monte Carlo runtime
Single configuration: ∼4 h on 100 cores ← slow

with aggressive variance reduction

⇒ Can’t explore large parameter space
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Motivation
How to stop a beam? — Optimisation

Multi-dimensional optimisation

Parameter space

Dimensions
Materials

either heterogeneous or homogeneous

Monte Carlo runtime
Single configuration: ∼4 h on 100 cores ← slow

with aggressive variance reduction

⇒ Can’t explore large parameter space

Simplification needed
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Abstract
Purpose: To conduct research related to slow neutrons, fast neutrons must be
mode-rated and shifted to the desired energy region.
Methods: In this research, an iterated prediction method, in which the
neutron transportation properties of all materials were characterized by a
reflection matrix, R, and a transmission matrix, T , was proposed to bypass a
time-consuming Monte Carlo simulation and predict the performance of the
moderator, including the epithermal neutron flux and the dose of fast neutrons
and gamma rays, used for boron neutron capture therapy (BNCT). To find the
optimal solution in the huge parameter space, a genetic algorithm combined
with transmission and reflection matrices was utilized.
Results: The results showed that a 70-loop iteration was able to find a design
for the moderator of BNCT with almost 80% higher epithermal neutron flux per
kilowatt than that of the empirically optimized moderator that was previously
reported in the literature. Compared with the Monte Carlo method, this method
had the advantage of reducing the calculation time and statistical errors.
Conclusion: The genetic algorithm with matrices (GAM) method can be used
to find an optimal solution in a huge parameter space without brute-force calcu-
lations. It could be a promising method for designing the moderator for thermal
or epithermal neutron usages.

KEYWORDS
BNCT, genetic algorithm, neutron spectrum tailoring, transmission and reflection matrices

1 INTRODUCTION

Slow neutrons are widely used in middle- and high-
Z nuclides resonant analyses, boron neutron capture
therapy (BNCT), thermal neutron imaging, thermal neu-
tron analyses, Bragg-edge analyses, and other long-
wavelength neutron studies.1–3 To generate slow neu-
trons, fast neutrons, which are produced via various
nuclear reactions and have typical energies of MeV
or even larger, must be moderated and shifted to the
desired energy region. Because different applications
require neutrons with different energy distributions of
high flux, a moderator, which decelerates the fast neu-
trons to slow neutrons, plays a significant role in the
whole system because it significantly affects the avail-
able neutron flux in the energy region of interest. A
Monte Carlo–based simulation can evaluate the per-

formance of a moderator in detail, and, in principle, it
can help researchers to find the optimal design for a
moderator that may achieve the highest neutron flux of
interest.4 However,as the Monte Carlo method is a time-
consuming calculation method in which the relative sta-
tistical error of the calculated result obeys the 1/N1/2

rule,20 where N is the number of histories of the tracked
neutrons; it may take a very long time to get a calcu-
lation result with an acceptable statistical error. This is
especially the case when the neutron spectrum should
be tailored to the energy region of interest,and neutrons
outside the energy region of interest should be deeply
suppressed. For example, in the design of the modera-
tor used for BNCT,the flux of epithermal neutrons should
be kept as high as possible, whereas the fast neutrons,
gamma rays, and thermal neutrons should be removed
from the delivered neutron beam.5 Actually, in addition

598 © 2021 American Association of Physicists in Medicine wileyonlinelibrary.com/journal/mp Med Phys. 2022;49:598–610.
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Inspiration
600 NEUTRON SPECTRUM TAILORING FOR BNCT

F IGURE 1 Layout of the e-LINAC-driven BNCT system. Energetic electrons are delivered by an e-LINAC and bombard the tungsten target,
in which the bremsstrahlung photons are produced. The forward emitted photons immediately interact with the same tungsten target to produce
photoneutrons via the (𝛾,n) reactions. The photoneutrons are fast neutrons and should undergo moderation to be decelerated, by the moderator
and reflector, to epithermal neutrons for irradiating the patients in the BNCT treatment

F IGURE 2 Reflected and transmitted neutrons of incident
neutrons. When the incident neutron enters the slab, it will undergo
inelastic scattering or elastic scattering. The scattered neutron will
change both its moving direction and kinetic energy. Depending on
the position where the neutron leaves the slab, the escaped neutron
can be deemed as the transmitted neutron (escaping from the slab’s
opposite side of the incident neutron) or the reflected neutron
(escaping from the slab’s same side of the incident neutron). The
radiative capture also may be present and will absorb the neutron
and produce unwanted gamma rays. The slab materials should
contain nuclides with large scattering cross sections but small
capture cross sections.18,19

along the y and z directions simultaneously. Therefore,
the design of a moderator can be simplified, and only
the x-direction should be a matter of concern.

2.1.2 Substitution matrices for Boltzmann
transport equation

Figure 1 shows that a moderator for BNCT typically con-
sists of many layers of varied materials and thicknesses.
Although numerous interaction processes exist when
neutrons travel inside each slab, as shown in Figure 2,
these processes are not necessarily a matter of concern
when only the neutrons leaving the slab are of interest.

Consequently, the influence of each layer on the trans-
portation of neutrons can be characterized with only two
matrices: the transmission matrix, T , and the reflection
matrix,R.T and R, the matrices that represent the trans-
portation performance of neutrons for a slab, can be
used to calculate the spectra and integrated fluxes of
neutrons penetrating or reflected by a slab, respectively.
This would be beneficial to the study of a moderator for
BNCT, because a time-consuming Monte Carlo simula-
tion would be replaced by matrix operations in the itera-
tive process to optimize the design.12–14

The thickness, t,along the x-direction of each slab can
be chosen to be far smaller than the mean free path of
the neutrons inside the related material. Thus, neutrons
penetrating the slab consist of two main components:
the unscattered neutrons and neutrons undergoing only
one collision.10,11 The flux of the penetrating neutrons
can be expressed as Equation (1):7–9

𝜙(t, E,𝜇) = 𝜙0(E,𝜇)e
−Σ(E) t𝜇

+ 1𝜇 ∫ dE′ ∫ dΩ′𝜎(Ω,Ω′; E, E′)𝜙0(E′,𝜇′)
×e

−Σ(E) t𝜇 ∫
t

0
dx′e−( Σ(E′)𝜇′ − Σ(E)𝜇 )x′

(1)

where 𝜙0 (E, 𝜇) is the flux of incident neutrons with
energy of E and direction of 𝜇, which stands for the
cosine value of the angle between the moving direc-
tion of the transmitted neutrons and the x-direction;𝜙(t, E, 𝜇) is for the neutrons penetrating a slab with
a thickness of t; x is the depth of the collision point
along the x-direction inside the slab; 𝜇 is the cosine of
the angle between the scattered neutron direction, and
the x-axis after each collision; Σ(E) and Σ(E) are the
total macroscopic cross sections for neutrons with ener-
gies of E and E, respectively; and 𝜎(Ω, Ω; E, E) is the
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[R. Zhang et al]

The paper describes a methodology of 1D neutron transport
with transmission matrices

and optimisation of the moderator layout with genetic
algorithms

We extended it to transport arbitrary number of particle
types including conversion between particle types

and improved accuracy utilising the Markov chain process
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Transmission matrices
Introduction

The radiation transport is simplified by performing it along a single
direction at a time

?

?
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Transmission matrices
Introduction

100×1 cm 220×1 cm

in
fi

n
it

e

The material is split by thin layers

For each material, its Green’s functions are pre-calculated
with Monte Carlo (needs to be done once)
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Transmission matrices
Green’s function

Green’s functions — definition

If one knows the solution G (x , x ′) to a
δ-function

L̂(x)G (x , x ′) = δ(x − x ′)

then one can fold them to build the solution

u(x) =

∫
f (x ′)G (x , x ′) dx ′

for a general source term

L̂(x) u(x) = f (x)

1 cm

R
efl

ec
te

d

T
ra

n
sm

it
te

d
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Transmission matrices
Green’s function

Green’s functions — calculation

1 Bin the energy range of interest

2 Bin the angular range [−π, π]

3 For each incident particle type, energy
and angle calculate double differential
spectra of reflected and transmitted
particles with Monte Carlo

4 Use these spectra to build reflection and
transmission matrices for each particle
type, i.e. for neutrons and photons:

Rn→n, Rn→γ , Rγ→n, Rγ→γ

Tn→n, Tn→γ , Tγ→n, Tγ→γ

Matrix shape: (NE · NΩ)× (NE · NΩ)

1 cm

R
efl

ec
te

d

T
ra

n
sm

it
te

d
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Transmission matrices
Solution

S0

1

2 n

. . .

Solution for 1 layer

S1 = S0 × T1

S2 ≈ S1 × T2

+ S1 × R2

× R1 × T2

+ higher order reflections

Sn ≈ . . .

Si — spectra exiting layer i (and entering layer i + 1)

S0 — source term (mixed particle spectra allowed)

Ti — layer i transmission matrix

Ri — layer i reflection matrix

Konstantin Batkov | MAX IV | Shielding calculations with Markov chains and genetic algorithms | 14 / 40



Transmission matrices
Solution

S0

1 2

n

. . .

Solution for 2 layers

S1 = S0 × T1

S2 ≈ S1 × T2

+ S1 × R2

× R1 × T2

+ higher order reflections

Sn ≈ . . .

Si — spectra exiting layer i (and entering layer i + 1)

S0 — source term (mixed particle spectra allowed)

Ti — layer i transmission matrix

Ri — layer i reflection matrix
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Transmission matrices
Solution

S0

1 2 n

. . .

Solution for n layers

S1 = S0 × T1

S2 ≈ S1 × T2 + S1 × R2 × R1 × T2

+ higher order reflections

Sn ≈ . . .

Si — spectra exiting layer i (and entering layer i + 1)

S0 — source term (mixed particle spectra allowed)

Ti — layer i transmission matrix

Ri — layer i reflection matrix
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Transmission matrices
Results

S0 ?

100×1 cm

Incident beam: 3 GeV electrons

Material: Concrete

Thickness: 1 m (100 layers)

Transported particles: n, γ, e±, µ±

Energy: 130 bins between 1 meV and 5 GeV

Emission angles: 18 bins between −π and π

Matrix shape:

130 · 18⇒
2340× 2340
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Transmission matrices
Results — Photons

Photons
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Transmission matrices
Results — Photons

1 k 1 M 1 G
10−5

10−4

10−3

10−2

10−1

Energy [eV]

F
lu

x
[a

.u
.]

MCNP 1 day
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Transmission matrices
Results — Photons

1 k 1 M 1 G
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Transmission matrices
Results — Electrons

Electrons
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Transmission matrices
Results — Electrons

1 k 1 M 1 G
10−5

10−4

10−3

10−2

10−1

100

Energy [eV]

F
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x
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MCNP 1 day
Matrices 1 min
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Transmission matrices
Results — Muons

Muons
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Transmission matrices
Results — Muons

100 k 1 M 10 M 100 M
10−17

10−16

10−15

10−14

10−13

10−12

Energy [eV]
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Matrices 1 min
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Transmission matrices
Results — Neutrons

Neutrons
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Transmission matrices
Results — Neutrons

1 m 1 1 k 1 M 1 G
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Transmission matrices
Results — Neutrons

1 m 1 1 k 1 M 1 G

0

2

4

6

8

10

Ratio of integrals:
0.85± 0.03

Energy [eV]

F
lu

x
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MCNP/Matrices
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Transmission matrices
Results — Neutron scattering

Motivation for using Markov chains to improve neutron spectrum

S0 ?
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Transmission matrices
Results — Neutron scattering

Motivation for using Markov chains to improve neutron spectrum
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Markov chains
Definition

Future depends on today but not on yesterday

Typical examples

Brownian motion

Poisson processes

Stock market

Google’s PageRank

Monopoly game

search: “Dominating Monopoly using Markov chain”
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Markov chains
Block matrix definition for 1 layer

0 1 2

0

1

2

[0] [0][E]

[R1] [0] [T1]

[0] [0] [0]

S0

Layers: 0 1 2

Matrix shape: ((Nlayers + 2) · NE · NΩ · Nparticle types )× ((Nlayers + 2) · NE · NΩ · Nparticle types )
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Markov chains
Block matrix definition for 2 layers

0 1 2 3

0

1

2

3

[0] [0] [0][E]

[R1] [0] [T1] [0]

[0] [R2] [0] [T2]

[0] [0] [0] [0]

S0

Layers: 0 1 2 3

Matrix shape: ((Nlayers + 2) · NE · NΩ · Nparticle types )× ((Nlayers + 2) · NE · NΩ · Nparticle types )
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Markov chains
Markov chain process

Sn ← S0 × (Mn)k

S0 — source term (mixed particle spectra allowed)

Sn — spectra exiting n layers

(Mn)k — Markov chain matrix for n layers in the power of k

The value of k defines the reflection orders to be included in
the result
The process quickly converges ⇒ k does not need to be large
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Markov chains
Results — Neutrons

1 m 1 1 k 1 M 1 G
10−5

10−4

10−3

Energy [eV]

F
lu

x
[a

.u
.]

MCNP 1 day
Matrices 1 min
Markov 2 h
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Markov chains
Results — Neutrons
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Genetic algorithms
Motivation

At this point we can quickly calculate particle spectra beyond
thick shielding

This allows us to test many heterogeneous beam dump
configurations in 1D

S0
. . .

100 layers

How many configurations to test?

Number of layers: n=100
Number of materials, e.g. k=7

⇒ brute force is still too time expensive
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Genetic algorithms
Quick introduction

Genetic algorithms implement natural selection principles

Crossover
Mutation

They induce evolution of population to a state that maximises
the specified figure-of-merit

We can define a figure-of-merit to reflect our boundary
conditions:

Dose rate
Size
Mass
Cost
Complexity
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Genetic algorithms
Quick introduction — Crossover

604 NEUTRON SPECTRUM TAILORING FOR BNCT

F IGURE 5 Crossover and mutation method for genetic algorithm. A pn probability and a pm probability are set for the crossover and
mutation, respectively, to strike a compromise between them. In the crossover, the elements of Parent 1 and Parent 2 will be exchanged
randomly to form the new offspring. In the mutation, the offspring will inherit the elements of its parent except that some randomly chosen
elements will be changed randomly. All the offspring will form the new generation of population

solutions in a population was selected somewhat arbi-
trarily as 50 to compose a population containing a large
enough probability for the genetic mutation to approach
the optimal result.

To start the iteration process without a loss of gen-
erality, the 50 solutions of the very first generation of
the population were determined randomly. The neutron
transportation performances of these solutions were
then predicted agilely with the TRM method but not with
the Monte Carlo method in order to form a performance
vector of three elements, [𝜙epi,Dfast∕𝜙epi,D𝛾∕𝜙epi],which
was in turn fed into the objective function to calculate
the FOM for each solution. Dfast and D𝛾 are dose rates
due to fast neutrons and gamma rays, respectively. It
was apparent that the FOMs of all the solutions could
not be the same. Solutions with the top 5% FOMs were
directly inherited by the next generation. For the remain-
ing 95% of the solutions for the next generation, the
offspring were generated via the crossover or mutation
methods with the probabilities of pc and pm, respectively,
as shown in Figure 5. These two parameters are user-
assigned and do not have to be calculated. In principle,
the range of these two parameters can be any value
within the region of [0 1], with pc + pm = 1. To strike
a compromise between the convergence and mutation,
the pm is usually set to be smaller than 0.5, and thus the
pc is larger than 0.5. In this optimization process, pc and
pm are assigned as 0.7 and 0.3,respectively.The popula-
tion of the next generation underwent the same process
to produce its own daughter generation. The repeated
iteration thus induced the evolution of solutions in
the population so that their neutron transportation

performances might gradually conform to the desired
performance in the BNCT system.

2.2.2 Objective function designed for a
genetic algorithm

The objective function played an important role in direct-
ing the evolution of the populations of different gener-
ations. As suggested by the IAEA reference,5 not only𝜙epi but also Dfast and D𝛾 could affect the performance
of the moderator.Therefore, the function shown in Equa-
tion (8) that involved x1,x2,and x3,where x1 is 𝜙epi/𝜙0,x2
is (𝜙epi/Dfast)/(𝜙0/Dfast0), and x3 is (𝜙epi/D𝛾)/(𝜙0/D𝛾0), 𝜙0,
Dfast0 and D𝛾0 are the IAEA-recommended values for
the epithermal neutron flux and the dose rates of fast
neutrons and gamma rays, had to be formed. f (x1,2,3)
are functions shown in Figure 6. Table 1 shows the
optimal results for different objective functions with the
incident neutrons delivered by the 50-MeV electron lin-
ear accelerator (e-LINAC)-driven neutron source. The
monotonically increasing relationship between the x1,2,3
and f (x1,2,3) could help achieve higher 𝜙epi and lower
Dfast and D𝛾. It can be seen from the results shown in
Table 1, however, that a “step function” with the shape
shown in Figure 6a, but not a linear function as shown
in Figure 6b, demonstrated a better result. One possi-
ble explanation for this difference might be that all the
three parameters, x1, x2, and x3, were actually deeply
correlated, meaning that an improvement of any sin-
gle parameter might also harm the other two. The “step
function” shown in Figure 6a could be separated into
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[R. Zhang et al]

pc — crossover probability

Elements of both parents are randomly exchanged to form a
new offspring
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Genetic algorithms
Quick introduction — Mutation

604 NEUTRON SPECTRUM TAILORING FOR BNCT

F IGURE 5 Crossover and mutation method for genetic algorithm. A pn probability and a pm probability are set for the crossover and
mutation, respectively, to strike a compromise between them. In the crossover, the elements of Parent 1 and Parent 2 will be exchanged
randomly to form the new offspring. In the mutation, the offspring will inherit the elements of its parent except that some randomly chosen
elements will be changed randomly. All the offspring will form the new generation of population

solutions in a population was selected somewhat arbi-
trarily as 50 to compose a population containing a large
enough probability for the genetic mutation to approach
the optimal result.

To start the iteration process without a loss of gen-
erality, the 50 solutions of the very first generation of
the population were determined randomly. The neutron
transportation performances of these solutions were
then predicted agilely with the TRM method but not with
the Monte Carlo method in order to form a performance
vector of three elements, [𝜙epi,Dfast∕𝜙epi,D𝛾∕𝜙epi],which
was in turn fed into the objective function to calculate
the FOM for each solution. Dfast and D𝛾 are dose rates
due to fast neutrons and gamma rays, respectively. It
was apparent that the FOMs of all the solutions could
not be the same. Solutions with the top 5% FOMs were
directly inherited by the next generation. For the remain-
ing 95% of the solutions for the next generation, the
offspring were generated via the crossover or mutation
methods with the probabilities of pc and pm, respectively,
as shown in Figure 5. These two parameters are user-
assigned and do not have to be calculated. In principle,
the range of these two parameters can be any value
within the region of [0 1], with pc + pm = 1. To strike
a compromise between the convergence and mutation,
the pm is usually set to be smaller than 0.5, and thus the
pc is larger than 0.5. In this optimization process, pc and
pm are assigned as 0.7 and 0.3,respectively.The popula-
tion of the next generation underwent the same process
to produce its own daughter generation. The repeated
iteration thus induced the evolution of solutions in
the population so that their neutron transportation

performances might gradually conform to the desired
performance in the BNCT system.

2.2.2 Objective function designed for a
genetic algorithm

The objective function played an important role in direct-
ing the evolution of the populations of different gener-
ations. As suggested by the IAEA reference,5 not only𝜙epi but also Dfast and D𝛾 could affect the performance
of the moderator.Therefore, the function shown in Equa-
tion (8) that involved x1,x2,and x3,where x1 is 𝜙epi/𝜙0,x2
is (𝜙epi/Dfast)/(𝜙0/Dfast0), and x3 is (𝜙epi/D𝛾)/(𝜙0/D𝛾0), 𝜙0,
Dfast0 and D𝛾0 are the IAEA-recommended values for
the epithermal neutron flux and the dose rates of fast
neutrons and gamma rays, had to be formed. f (x1,2,3)
are functions shown in Figure 6. Table 1 shows the
optimal results for different objective functions with the
incident neutrons delivered by the 50-MeV electron lin-
ear accelerator (e-LINAC)-driven neutron source. The
monotonically increasing relationship between the x1,2,3
and f (x1,2,3) could help achieve higher 𝜙epi and lower
Dfast and D𝛾. It can be seen from the results shown in
Table 1, however, that a “step function” with the shape
shown in Figure 6a, but not a linear function as shown
in Figure 6b, demonstrated a better result. One possi-
ble explanation for this difference might be that all the
three parameters, x1, x2, and x3, were actually deeply
correlated, meaning that an improvement of any sin-
gle parameter might also harm the other two. The “step
function” shown in Figure 6a could be separated into
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pm — mutation probability

The offspring inherits the elements of its parent but some
randomly chosen elements are randomly changed
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Results
Materials

Steel

Lead

Tungsten

Concrete

Boron carbide (B4C)

Water

Polyethylene
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Results
Optimal beam dump configuration

Optimised beam dump layout

5 cm

Lead

85 cm

Steel

5 cm

Poly

Almost the same as our initial guess!
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Optimal beam dump configuration
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Results
Final geometry (fine-tuned with FLUKA)

3.1. OVERVIEW OF THE TDC LINE
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65 cm

35 cm

(a) Horizontal section

42 cm 90 cm

(b) Vertical section

30 cm

30 cm

Kapton tape: ∼0.1 cm thick.

Lead: 3 cm radius, 5 cm length.

Steel: S235JR.

Borated polyethylene: 5 cm thick.
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(c) Vertical section

Figure 3.28: Branch A beam dump

42 cm 90 cm

(a) Vertical section

35 cm 65 cm

(b) Vertical section

Figure 3.29: Branch B beam dump: vertical sections. Horizontal view is similar to figure 3.28a.
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Figure 3.30: Branch C beam dump. The second vertical view is similar to that in figure 3.29b.
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Results
Final geometry (as built without Polyethylene)
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Applications
MAG

MAG — an open source tool for 1D shielding calculations:
https://github.com/kbat/mag

Solver
$ mag-solve -layers 5 Lead 100 Concrete 5 Poly

-source e 3e3

Dose rates [pSv/primary]:
e: 1.13
n: 0.04
γ: 1.42
µ: 1.49e-11
total: 2.56

+ data file with spectra for each particle type
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Applications
MAG

MAG — an open source tool for 1D shielding calculations:
https://github.com/kbat/mag

Optimiser

$ mag-optimise -nlayers 100 -source e 3e3

Optimises a slab made of 100 layers filled with materials from
the existing database

Arbitrary figure-of-merit can be specified

Complex sources are supported
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Applications

Simple shielding calculations

e.g. non-neutron applications
e.g. for non-FLUKA users

General particle transport through matter

Layer/mesh-based variance reduction generation
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