MAX-IV: Operations and plans

ESLS, 2022

Stephen Molloy Head of Accelerator Operations

Outline

- Headline statistics
- Highlights
 - Accelerator Reliability Workshop 2024
 - MTBF for linac-based sources
 - □ Low-emittance lattice for our 3 GeV ring
 - □ Multipole Injection Kicker for our 1.5 GeV ring
 - TRIBS"
- **D** Power supply crisis

MAX-IV Facility

December 2022

ESLS, 2022

Regular delivery to 16 beamlines

Linac FemtoMAX 3.06 3.07 Charge Charge (pC) 100 pC Repetition rate: 9.99 Hz Accelerated charge: 109.40 pC 10 Hz rep rate 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 **3 GeV Ring** NanoMAX 6.55 BioMAX 6.19 250 4.97 DanMAX MicroMAX 12.00 Current 13.68 h 299.32 mA 300 mA Current (mA) 2022-11-09 04:48:08 BALDER 297.66 5.00 VERITAS 17.39 **Delivery: Top-Up** Ten-minute top-ups ForMAX 4.50 HIPPIE 33.39 CoSAXS 7.41 SoftiMAX 28.27 NEXT INJECTION: 0 2022-11-09 13:20:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 1.5 GeV Ring FlexPES 29.48 SPECIES 32.70 Current 400 mA 396.71 mA 20.44 h Current (mA) 2022-11-09 05:25:15 250 -393.38 BLOCH 37.50 Delivery: Top-Up 30-minute top-ups MAXPEEM 33.23 FinEst 37.50 NEXT INJECTION: 0 2022-11-09 13:30:00 02:00 03:00 04:00 07:00 10:00 05:00 06:00 08:00 09:00 11:00 12:00 13:00 **Operator Message** Machine Status 2022-11-08 16:14 Safety Message MAXIN R3: Delivery R1: Delivery. 2022-11-09 13:13:45 SPF: Delivery

Top-level statistics

□ Year to 09/12/2022

(Except for the "*Planned*" column)

MTBF = planned / N MTTR = down / N Availability = 1 – down/planned

	Delivered	Planned total for 2022	Availability	MTBF	MTTR
3 GeV Ring	4032	4464	98.2%	3.1 days	1.36 hours
1.5 GeV Ring	4240	4848	98.4%	4.1 days	1.62 hours
SPF	3744	4272	96.9%	0.6 days	0.41 hours

MTBF = planned / N MTTR = down / N Availability = 1 - down/planned

Annual evolution

🛛 R3:

Upwards trend, interrupted by klystron issues in 2021

🖵 R1:

Same upwards trend, with the same interruption
 Some sign of saturation at ~98%?

SPF:

□ Improved statistics gathering from 2020

This drop is followed by a rise due to better understanding of failures

2022 data is year-to-24/11

MTBF = planned / N MTTR = down / N Availability = 1 - down/planned

Annual evolution

MTBF Project

- Eradicate human error related to the ring-side heat absorber (HA)
 - Automation and Controls Hardware teams completed a project to lock ID motors if:
 - □ The ringside HA is closed AND
 - □ The ID is fully open
- □ Review Machine Protection System (MPS) actions
 - All MPS actions resulted in valves being closed before the heat absorber
 - The beam was then dumped to protect the valves
 - □ Changed to force HA closed first, then the valves
 - Deployed on all beamlines during pandemic shutdown

Sub-system	MTBF 2020	MTBF 2022
Beamlines	1.0 week	23.8 weeks
Magnets	1.5 weeks	7.9 weeks
RF	1.6 weeks	2.6 weeks
Human error	2.3 weeks	4.8 weeks
Controls	3.3 weeks	11.9 weeks

Short Pulse Facility: MTBF

Short Pulse Facility: MTBF

Short events are dominated by klystron/modulator trips, which are now handled by an automatic reset system

- □ Implemented by AccOps
- □ Specified by klys/mod subsystem owner

May take up to 10 minutes to complete the reset

□ Monitoring vacuum, ramping carefully, etc.

 Experience showed that too fast restart may lead to damage to equipment and decrease overall availability

Accelerator Reliability Workshop

Host status has been awarded jointly to ESS and MAX-IV for 2024

See you in Lund in 2024!

MTBF vs Downtime Duration

- Given the successful experience with auto-restart we believe the present MTBF vs Duration performance is close to optimum.
- Other linac-based facilities show similar numbers.

Further studies on the 3 GeV ring lattice for reduced emittance

Light colors: Present lattice330 pmradDark colors: Reduced emittance lattice270 pmrad

For this, less than 7 % quad strength changes are needed \rightarrow Magnet iron is untouched

MAXIV

Slides and data

by M. Apollonio

R3	baseline	low-emittance
ϵ (pm rad)	328.18	269.14
ν	(42.20, 16.28)	(44.1997, 14.2793)
ξ (natural)	(-49.98, -50.08)	(-50.72, -76.47)
$\alpha_C (\times 10^6)$	305.97	259.69
$\tau_{x,y,E}$ (ms)	15.7, 29.0, 25.2	16.9, 29.0, 22.7
$\beta_{\rm x,y}^{\rm straight}$ (m)	9.0, 2.0	7.47, 1.04
brightness increase (%)	-	+22
RF _{height} (1.2 MV) (%)	5.19	5.64

element	baseline	low emittance	Delta
sextupoles	(m ⁻³)	(m ⁻³)	%
SFi	207.4	212.1	+2.26
SFo	174.0	189.5	+8.91
SFm	170.0	190.5	+11.20
SD	-116.6	-130.2	+11.16
SDend	-170.0	-159.7	-6.05
octupoles	(m ⁻⁴)	(m ⁻⁴)	
OXX	-1649	-3137	+90.23
OXY	3270	2421	-25.96
OYY	-1420	-948	-33.24

1. BPM acquisition **modified** to operate in **single pass mode** with **large S/N ratio**

4.a Linear Optics can be characterized even with a current of 250 uA only ...

2. Single pass trajectory **response matrix** technique used to **steer the beam** (e.g. trajectory reduction in the V-plane)

3. (RF off) **substantial increase** in n. of. turns, (RF on) **full capture**

- residual **beta-beat** from **50% to 13%**
- horizontal dispersion gradually moves towards low-emittance model

B320B-O/DIA/CAM-0

 $σ_x$ = 20.37 ±0.32 μm (measured, 50 samples) $β_x$ = 1.354m (considering LOCO **residual beta-beating of -4.1%** $η_x$ ≈ -5.3mm @dipole source (**measured**)

 δ_{E} = 0.073% (theoretical value)

 $\varepsilon_x \approx (\sigma_x^2 - (\eta_x \delta)^2) / \beta_x = 295 \pm 10 \text{ pm rad} (only statistical fluctuations)$

PRESENT STATUS - issues

- Stacking (accumulation) still impossible with present Dipole Kicker injection scheme indicating a smaller than expected Dynamic Aperture. Work in progress to overcome this problem
- Tune scans, on-line optimisations, **introduction of bumps** explored to try and reduce the gap between stored and injected beam acceptance

Multipole Injection Kicker (MIK) for 1.5 GeV ring at MAX IV (Slide courtesy of Alexey Vorozhtsov)

- Top-up injection of the e-beam into the storage ring without disturbances on a stored beam
- □ Implemented in 3.0 GeV ring(2017), SOLEIL- MAX IV collaboration.

<u>MIK R3:</u> Pulse duration=**3.5 μs@10Hz**, Imax=7 kA@Umax=15 kV, Xinj=-4.66 mm, α=-1.176 mrad (BL=-11.7 mTm)

- Similar system for 1.5 GeV ring, but is more challenging than for 3.0 GeV due to shorter pulse duration of 1.28 μs
 - Initial requirements (from design early design studies): Xinj=-5.4 mm(MIK at the positon of Dipole kicker)
 - α=2.4 mrad (BL=12.0 mTm), Imax=5 kA@Umax=24 kV
 - Updated requirements (new design study in 2021):
 MIK is shifted by 931 mm Downstream

One of the options: I=2.3 kA @U=11 kV

- I. Xinj=-8.6 mm(1st kick), α =2.75 mrad
- II. Xinj=5.6 mm (2nd kick), α =-0.854 mrad

courtesy of Marco Apollonio

8 copper rods form the octupole field.

First Results with Beam

First Injection – Better performance than with dipole kicker

Pictures by Pedro Fernandes Tavares

First Results with Beam

Perturbations to the stored beam

Dipole Kicker

MIK

horizontal beam size: 150 μm(MIK is ON) ~10 times less than for the conventional dipole kicker

Pictures by Jonas Breunlin and Åke Andersson

Injection Efficiency

Transverse Resonance Island Buckets (TRIBS)

□ "Studies on Transverse Resonance Island Buckets in third and fourth generation synchrotron light sources"

- David Olsson, Åke Andersson
- Nuclear Inst. and Methods in Physics Research, A 1017 (2021) 165802

ESLS, 2022

Active shims

Main aim: make the ID transparent up to the oscillation amplitude of the stored beam during injection

Rough empirical method used to produce the active shim FF table:

- 1. Campaign of response matrix measurements done for gaps and phases
- 2. Fit model representation of ID via LOCO in each point to obtain integrated k and k_s
- 3. For simplicity obtain approximate octupole field in each point via a static octupole-to-quadrupole field ratio, determined in a few points by restoring bare lattice ADTS.
- Compute active shim currents to produce the inverted field profile (genetic optimizer used for first attempts)

FinEst kick map B_v(x) @ 20 mm gap, vertical pol.

Discrepancy due to strip current limits. Heavy weighting on central region ensures gradient well corrected (verified in follow-up LOCO campaigns)

0,22

0.215

1.5

FinEst @ 25 mm gap, ver. pol. No compensation

Active shim strip currents calculated to generate inverse of ID integrated field

FinEst @ 25 mm gap, ver. pol. Compensation active

Most extreme gaps/phases will require additional help from ring magnets even for the gradient... Not yet implemented!

Active shims

Main aim: make the ID transparent up to the oscillation amplitude of the stored beam during injection

Rough empirical method used to produce the active shim FF table:

- Campaign of response matrix 1. measurements done for gaps and phases
- Fit model representation of ID via LOCO in each point to obtain integrated k and k_s
- For simplicity obtain approximate 3. octupole field in each point via a static octupole-to-quadrupole field ratio, determined in a few points by restoring bare lattice ADTS.
- Compute active shim currents to 4. produce the inverted field profile (genetic optimizer used for first attempts)

0.8 B_y [G cm] y vs. x B_y [G cm] 0.4 0.2 -0.2 -0.4Stored beam oscillation amplitude -0.6 during injection -0.8 Fir 8 6

FinEst kick map $B_{y}(x) @ 20 \text{ mm gap, vertical poly}$

Discrepancy due to strip current limits. Heavy weighting on central region ensures gradient well corrected (verified in follow-up LOCO campaigns)

0,22

0.215

1.5

hor. ADTS

No compensation

Active shim strip currents calculated to generate inverse of ID integrated field

FinEst @ 25 mm gap, ver. pol. Compensation active

Most extreme gaps/phases will require additional help from ring magnets even for the gradient... Not yet implemented!

Power supply crisis

Two separate crises unfolding simultaneously

Power supply limitations in southern Sweden

National authority may issue an alert to a period of high risk to the gridDuring such a period MAX-IV will cease operations:

- □ Reduce consumption to a level consistent with office work
- Protect equipment that could be damaged by a sudden loss of power
- ❑ Significantly increased costs
 - Power and building rental
 - Budgets have been tightened significantly throughout the lab
 - **Top-level budget approved for 2023 allows operation as planned**

Summary

Continued improvement in understanding of failures is reflected in the delivery statistics

>98% for the rings, ~97% for the linac-based source

■ MTBF of 3 days for the large ring, and 4 days for the small

- □ Several highlights were reported
 - Low emittance lattice
 - Multipole injection kicker
 - TRIBS

Dever supply will remain a significant issue throughout the winter

Backup Slides

H'light: Filling Pattern Monitor & Feedback device

Work by

H'light: Filling Pattern Monitor & Feedback device

- □ Starting from the uniform fill, we create one, two or several bunch trains per turn
- □ With several trains, the non-uniform beam loading effect diminishes
- □ Might be beneficial for future more efficient bunch lengthening

R3	baseline	low-emittance
ϵ (pm rad)	328.18	269.14
ν	(42.20, 16.28)	(44.1997, 14.2793)
ξ (natural)	(-49.98, -50.08)	(-50.72, -76.47)
$\alpha_C (\times 10^6)$	305.97	259.69
$\tau_{x,y,E}$ (ms)	15.7, 29.0, 25.2	16.9, 29.0, 22.7
$\beta_{\rm x,y}^{\rm straight}$ (m)	9.0, 2.0	7.47, 1.04
brightness increase (%)	-	+22
RF _{height} (1.2 MV) (%)	5.19	5.64

element	baseline	low emittance	Delta
sextupoles	(m ⁻³)	(m ⁻³)	%
SFi	207.4	212.1	+2.26
SFo	174.0	189.5	+8.91
SFm	170.0	190.5	+11.20
SD	-116.6	-130.2	+11.16
SDend	-170.0	-159.7	-6.05
octupoles	(m ⁻⁴)	(m ⁻⁴)	
OXX	-1649	-3137	+90.23
OXY	3270	2421	-25.96
OYY	-1420	-948	-33.24

1. BPM acquisition **modified** to operate in **single pass mode** with **large S/N ratio**

4.a Linear Optics can be characterized even with a current of **250 uA** only ...

2. Single pass trajectory **response matrix** technique used to **steer the beam** (e.g. trajectory reduction in the V-plane)

3. (RF off) **substantial increase** in n. of. turns, (RF on) **full capture**

- residual **beta-beat** from **50% to 13%**
- horizontal dispersion gradually moves towards low-emittance model

B320B-O/DIA/CAM-0

- $\eta_{x} \approx$ -5.3mm @dipole source (measured)
- δ_{E} = 0.073% (theoretical value)

 $\varepsilon_x \approx (\sigma_x^2 - (\eta_x \delta)^2) / \beta_x = 295 \pm 10 \text{ pm rad}$ (only statistical fluctuations)

PRESENT STATUS - issues

- Stacking (accumulation) still impossible with present Dipole Kicker injection scheme indicating a smaller than expected Dynamic Aperture. Work in progress to overcome this problem
- Tune scans, on-line optimisations, **introduction of bumps** explored to try and reduce the gap between stored and injected beam acceptance

Further Short-Term Energy Efficiency Enhancement Measures

- **Q**Replacement of lighting in the experimental hall
- Change of average temperature in offices, common areas
- Relaxation of temperature control tolerances in non-critical areas (e.g. not accelerator tunnels or beamline hutches).
- General energy saving culture

Electricity Costs and Accelerator Operations

Preparedness for several scenarios

□Total/Partial Cuts □Identify minimum needed for critical systems.

Reduction of yearly consumption
 Extended shutdowns
 Avoid frequent stops

Consequences and Risk mitigation of loss of Electrical Power at the MAX IV campus	Decument incation	MAXIV
Prepared by	Ease	Resiston
Stephen Molloy (Head of Accelerator Operations)	2022-09-12	01
Approachy	Detx	^{Page}
Pedro F. Tavares (Accelerator Director)	2022-09-13	1 (6)

Reviewed by	Data
Yngve Cerenius	2022-09-21

Consequences and Risk mitigation of loss of Electrical Power at the MAX IV campus