

BESSY II status & upgrade

14.12.2022 Meghan McAteer on behalf of the machine group

BESSY II Machine Group

Michael Abo-Bakr, Pauline Ahmels, Terry Atkinson, Yvonne Bergmann, Thomas Birke, Daniel Böhlick, Jörg Borninkhof, Anne Bundels, Robert Burneleit, Natthawut Chaisueb, Nathalie Childs, Matthias Diehn, Marc Dirsat, Olaf Dreßler, Michael Edling, Silvio Ehlert, Dan Eichel, Volker Dürr, Pablo Echevarria, Dennis Engel, Fjodor Falkenstern, Jörg Feikes, Nadine Fischer, Roland Fleischhauer, Andre Frahm, Benjamin Franksen, Holger Glass, Hans-Walter Glock, Felix Glöckner, Anny Gora, Paul Goslawski, Malte Gotz, Mario Haucke, Jochen Heinrich, Stine Heise, Marco Herzog, Andreas Heugel, Frank Hoeft, Harry Hoffmann, Falk Hoffmann, Karsten Holldack, Holger Huck, Ji-Gwang Hwang, Karsten Janke, Andreas Jankowiak, Christian Jung, Nicole Kaubisch, Christian Kalus, Waheedullah Sulaiman Khail, Jens Knobloch, Jörg Kolbe, Arnold Kruschinski, Bernhard Kuner, Jens Kuszynski, Victoria Laux, Ji Li, Benjamin Liebe, Tobias Loewner, Michael Markert, Aleksandr Matveenko, Meghan McAteer, Andreas Meissner, Ingo Müller, Christian Nass, Ingo Neumann, Volker Oswald, Sylvia Pavlis, Götz Pfeiffer, Fabian Pflocksch, Lutz Pichl, Henry Plötz, Jens Raeder, Günther Rehm, Markus Ries, Stefan Rotterdam, David Rückert, Roswitha Schabardin, Andreas Schälicke, Tobias Schneegans, Günter Schindhelm, Kevin Schemmel, Gregor Schiwietz, Jörg Schleuer, Pierre Schnizer, Bernhard Schriefer, Christoph Schröder, Michael Schwietz, Jörg Schleuer, Nichael Ulrich, Stefan Wiese, Daniel Wolk, Adolfo Velez, Jens Völker, Antje Vollmer, Sven Wrede ...

and many more

Parameters											
Energy	1.7 GeV										
Circumference	240 m										
Horizontal emittance	7 nm rad										
Beam current	300 mA										
RF frequency	500 MHz										
max. RF voltage	2 MV										
Bunch length (zero current)	10 ps										
low-α	2 ps										
Mom. Comp. factor low-α	7.5×10^{-4} 3.5×10^{-5}										

- in user operation since 1998
- diverse user community
- offering short x-ray pulses and timing

Outline

- Operation status
- Economy and energy plan
- Developments, upgrades, plans

OPERATION SCHEDULE FOR 2022

- Access - no beam	AS A	Accelerator Sta	art-up C	U Commissioning/U user shift	ser FB Few Bunch M user shift	lode low-a Low-alpha user shift	MB Multi bunch MC user shift	ID/beamline Comm	issioning <mark>MS</mark> Machi	ne Studies <mark>PTB</mark> speci	al PTB SB Single bun user shift	ch <mark>SC</mark> set-up/comm	issioning SD Mainte	enance shut down Te	st Test mode user shift	W beam scrub
Beamtime								2	2022/1							
Month	January							Fe	ebruary							
Week	52	1		2	3	4	5	6	7	8	9	10	11	12	13	
operation-mode	SD	MS		MB	MB	MB	MB	SB	MC	low-a	MB	MB	MB	MS	MB	
Day	1 2	2 3 4 5 6	7 8 9	10 11 12 13 14 15 16	17 18 19 20 21 22 23	24 25 26 27 28 29 30	31 1 2 3 4 5 6	7 8 9 10 11 12 13	14 15 16 17 18 19 20	21 22 23 24 25 26 27	28 1 2 3 4 5 6	7 8 9 10 11 12 13	14 15 16 17 18 19 20	21 22 23 24 25 26 27	28 29 30 31	
Shift 1 (07:00 - 15:00)																
Shift 2 (15:00 - 23:00)																
Shift 3 (23:00 - 7:00)																

Beamtime	2022/1 2022/										2022/2																				
Month	April						Мау							June																	
Week	13	14	15	16	17		18	В		19			20			21			22			23			24			25		26	
operation-mode	MB	MB	SD	MB	MB		S	D		SD			SD			SD			SD			SD			SD			SD		SD)
Day	1 2 3	4 5 6 7 8 9 10	11 12 13 14 15 16 17	7 18 19 20 21 22 23 24	25 26 27 28 29 30	1 2	3 4 !	5 6 7	8 9 1	0 11 12	13 14 15	16 17	18 19 20	21 22	23 24 2	25 <mark>26</mark> 2	7 28 29	30 31	1 2 3	4 5	6 7	8 9	10 11 1	12 13 14	4 15 16	17 18 19	20 21 22	23 24 25 2	26 27	28 29 30	0
Shift 1 (07:00 - 15:00)																															
Shift 2 (15:00 - 23:00)																															
Shift 3 (23:00 - 7:00)																															

Beamtime								2022/2								
Month			July					August			September					
Week	26	27	28	29	30	31	32	33	34	35	36	37	38	39		
operation-mode	SD	SD	SD	SD	SD	AS	W	MC	MS	MB	MB	MB	MB	MS		
Day	1 2 3	4 5 6 7 8 9 10) 11 12 13 14 15 16 17	18 19 20 21 22 23 24	25 26 27 28 29 30 31	1 2 3 4 5 6 7	8 9 10 11 12 13 14	15 16 17 18 19 20 21	22 23 24 25 26 27 28	29 30 31 1 2 3 4	5 6 7 8 9 10 11	12 13 14 15 16 17	18 19 20 21 22 23 24 25	26 27 28 29 30		
Shift 1 (07:00 - 15:00)																
Shift 2 (15:00 - 23:00)																
Shift 3 (23:00 - 7:00)																

Beamtime	2022/2															
Month			Octob	er				November		December						
Week	39	40	41	42	43	44	45	46	47	48	49	50	51	52		
operation-mode	MS	MB	MB	MB	MB	Test	MC	low-a	SB	MB	MB	MB	SD	SD		
Day	1 2 3	4 5 6 7 8 9	10 11 12 13 14 15 16	17 18 19 20 21 22 23	24 25 26 27 28 29 30	31 1 2 3 4 5 6	7 8 9 10 11 12 13	14 15 16 17 18 19 20	21 22 23 24 25 26 27 28 29 3	0 1 2 3 4	5 6 7 8 9 10 11	12 13 14 15 16 17 18	19 20 21 22 23 24 25	26 27 28 29 30 31		
Shift 1 (07:00 - 15:00)																
Shift 2 (15:00 - 23:00)																
Shift 3 (23:00 - 7:00)																

DELIVERED ACCELERATOR TIME

AVAILABILITY AND OUTAGE STATISTICS

Year	Scheduled	Availability	Outages	MTBF	MTTR
2013	4505 h	96.5 %	105	42.9 h	1.5 h
2014	5408 h	92.9%	136	39.8 h	2.8 h
2015	3896 h	97.6 %	90	43.3 h	1.0 h
2016	4855 h	98.7 %	69	70.4 h	0.9 h
2017	4299 h	94.2 %	62	69.3 h	4.0 h
2018	3578 h	99.2 %	51	70.2 h	0.6 h
2019	4058 h	98.3 %	67	60.6 h	1.0 h
2020	3455 h	98.5 %	49	70.5 h	1.0 h
2021	4960 h	98.9 %	55	83.3 h	0.9 h
2022*	3472 h	99.3 %	33	105.2 h	0.8 h

* Until 2022.12.05

NUMBER OF OUTAGES (TOTAL = 33)

Meghan McAteer et al., ESLS'22, 14.12.2022

Meghan McAteer et al., ESLS'22, 14.12.2022

Meghan McAteer et al., ESLS'22, 14.12.2022

BESSY II machine wallplug composition

- identification / review of main power consumers
- initiated implementation of power meters for subsystem distribution in machine control system

ENERGY-SAVING MEASURES

- Measures with no operational downside, either done already or in progress
 - 1 Hz booster RF
 - Removal of 33rd dipole
 - Replacement of power-hungry bend in TL
 - Improvements in RF transmitter efficiency
- Potential measures with slight to moderate user impact which could be considered in the future
 - Reduction of top-up rate and switching off booster between shots
 - (Reduction of main SR RF voltage)
 - (Modification of multibunch fillpattern, reduction of harmonic voltage)

There is no intention of switching off BESSY II for reasons of operation cost

RF EFFICIENCY MEASUREMENTS

- Efficiency of RF transmitters lower than expected at low power
- Reduction of transistor voltage by a few volts →

reduction of wallplug power consumption by almost 10%

USER OPERATION WITH ALTERNATE FILLING PATTERN FOR ONE WEEK

What was changed?

- much shorter gap (200ns \rightarrow 56ns)
- 2x PPRE
- single bunch asymmetric in gap

Delivered what was expected:

- Increased lifetime
- Reduced transient
- More efficient bunch lengthening (less power required for same average bunch length)

HARMONIC EU CAVITY - ALBA ACTIVE DESIGN

EU-level collaboration

- Design of active 1.5 GHz normal-conductive cavity started by ALBA in 2015
- ALBA started construction of prototype(with EU funds) in 2018
- Agreement in 2020 between ALBA, DESY, and HZB for testing cavity
- Tested with beam at HZB in 2022

TEST OF HARMONIC EU CAVITY IN BESSYII

- Current hardware in BII kept alive beyond lifecycle
 - no spares left
 - already failed once
 - next fail -> beam current reduction to 250 mA & high stress on vacuum components & IVUs
- Relevant for
 - BESSY II and MLS
 - all 4th generation storage ring based light sources (e.g. BESSY III, MLS 2)

20

Meghan McAteer et al., ESLS'22, 14.12.2022

INJECTOR DEVELOPMENT

- The Booster has been reliably delivering beam to BESSY II for 24 years
- Recent investment in diagnostics:
 - turn-by-turn BPM electronics
 - bunch-by-bunch feedback
 - optical beamline
- For reliable, efficient top-up operation:
 - understanding and control of basic beam dynamics
 - robustness against instabilities
 → control of orbit through ramp
 → extraction orbit bump control
 - → control of tunes through ramp
 - \rightarrow chromaticity control through ramp
 - → homogeneity of bunches from linac
 - \rightarrow bunch-by-bunch feedback
 - → RF ramp/control of longitudinal parameters
 → beam loading

INJECTOR DIAGNOSTICS UPGRADES

New optical beamline

- 13m long optical beamline from bending magnet in booster
- 3 beamlines on the optical table:
 - source point imaging system
 - streak camera
 - research and development (feedback, source analysis, fast diodes)

New BPM electronics

- 48 Libera Spark units for BPMs in
 - Injection Line
 - Booster
 - Transfer Line

BEAM LOADING AT INJECTION

- Beam arrives in booster after dipoles have started ramping up
 - beam loading in cavities → charge-dependent voltage drop when beam arrives
 - not possible to inject longitudinally on-axis for both single-bunch and multi-bunch shots

Booster current with $\dot{B} = 0$ injection scheme:

BII PERSPECTIVES UNTIL 2035

- During 2022 shutdown:
 - complete renewal of low voltage distribution after 25 years

• Planned:

- Renovation (timing system, vacuum systems, uninterruptable power supply)
- 1.75 GHz cavities
- New WLS
- Permanent magnets
- Digital Twin

Slides courtesy of P. Goslawski et al. pre-CDR: https://doi.org/10.5442/r0004

BESSY III – THE TRIAD FOR A WORLD LEADING FACILITY FOR MATERIALS DISCOVERY

Courtesy of P. Goslawski et al.

- 1 a globally competitive 4th generation synchrotron radiation source
- 2 embedded in the integrated research campus Berlin-Adlershof
- 3 dedicated to metrology and quantitative materials science

BESSY III – DEMAND-DRIVEN DESIGN PARAMETERS

Courtesy of P. Goslawski et al.

- sweet spot photon energy: 1 keV
- main photon energy range: soft to tender X-rays
 - → 100 pm rad emittance
 → 50 m long beamlines
- 1st undulator harmonic with broad spectral coverage
 @ 1 keV, tender X-ray range
- partner request for useable photons > 20 keV
- lifetime, stability, ...

\rightarrow 2.5 GeV beam energy

- capacity request (HZB, PTB & BAM, user) & advanced ID systems
 - \rightarrow 16 straights, up to 5 m free length for IDs
 - → minimum one dipole source per arc plus
 - → calculable dipole source (homogenous bend) for metrology
- BESSY III must be part of the material science campus in Adlershof!

 \rightarrow max. 350 m circumference of the machine

BESSY III - SPECIAL REQUESTS FOR THE MACHINE DESIGN / ACCELERATOR LAYOUT

PTB request **special radiation source for metrology**. Magnetic field has to be measured with a NMR precision at beam position within the volume of 10x10x10 mm³ and no contamination of other sources!

Courtesy of P. Goslawski et al.

Covering a wide spectral range in one beamline.

→ Special insertion devices, e.g. in-vacuum IDs with small gap and/or APPLE knot for lowest photon energies

 \rightarrow homogenous bending magnet(s)

Support of Timing experiments

 → TRIBs (second orbit operation, under study)
 → Higher-Harmonic-Cavities for pulse length shaping (long=lifetime and short=timing)

Holldack, K., Schüssler-Langeheine, C., Goslawski P.et al. Flipping the helicity of X-rays from an undulator at unprecedented speed. Commun. Phys. 3, 61 (2020).

ALBA, DESY, HZB collaboration 1.5 GHz active normalconducting Higher Harmoninc Cavity installed in BESSY II for beam test (ongoing) 1.75 GHz under development

BESSY III LATTICE DESIGN – UNCONVENTIONAL BUT COMPETITIVE

- 6 Bend Higher Order Achromat, with reverse bends
- 2 solutions studied: separate function SF / combined function CF
- 2.5 GeV, 100 pmrad emittance
- 16 long (5.6 m), low beta straights ($\beta_{h,v}$ < 3 m)
- Robust hardware specifications → reduced technical risk
- Extensive usage of permanent magnets for energy efficiency
- First evidences that separate function (SF) lattice is superior solution
- Integrated dipole sources, including homogenous metrology bends
- Non-linear optimization & study of collective effects on the way
- R&D topics

active multi-frequency Higher-Harmonic-Cavities, hybrid PM multipoles, transparent injection with accumulation, full coupling control, ... partly addressed already within the BESSY II+ project

• 150 MeV injector linac, low emittance "in tunnel" booster, NEG coated vacuum system, top-up injection (accumulation) Courtesy of P. Goslawski et al.

SF: A more than competitive "separated function" lattice with 4 homogenous bends

CF: The more "classical" approach with combined function dipoles and only 2 homogenous bends

BESSY III LATTICE PERFORMANCE – FULLY IN LINE WITH OTHER ADVANCED DESIGNS

Courtesy of P. Goslawski et al.

Questions? Comments?

....

..

:: "

.....

SHUTDOWN ACTIVITIES

- complete renewal of low voltage distribution after 25 years
 - extensive preparation to supply backup power
 - no significant damage
 - smooth restart
 - created conditions for real time monitoring, archiving and therefor optimization of machine sided energy consumption

new power...

NC VSR

1.75 GHZ BEATING

- Followed towards BESSY III
- Maintain access to the 10 ps scale at 4th generation light sources
- all the infrastructure is already there
- just the cavity is missing complete renewal of low voltage distribution after 25 ye
- could be actually used if working at BESSY II

exploring uncharted territory, exploiting existing infrastructures, breakthrough potential

Markus Ries et al., BESSY II user meeting, 08.12.2022

Calculations of Longitudinal Parameters

Blue curves: typical operational RF waveform

Orange curves: RF waveform chosen for constant synchronous phase

Green curves: RF waveform chosen for constant synchrotron tune

- Maximum voltage is around 715 kV
- typical operational RF waveform increases energy acceptance at injection at the expense of flatness of Q_s and ϕ_s

Calculations of Longitudinal Parameters

• Could get slightly better results (ie slightly larger energy acceptance at injection) by letting the RF curve flatten after beam is extracted

Injection into stationary bucket ($\dot{B} = 0$)

Booster current with typical injection scheme:

Test of $\dot{B} = 0$ injection scheme successful; reduced the beam loss immediately following injection which is typically seen with MB beam

Booster current with $\dot{B} = 0$ injection scheme:

DIGITAL TWIN DEVELOPMENT

Courtesy of P. Schnizer, J. Bengtsson, W. Sulaiman Khail

Engine: Tracy¹ \rightarrow thor-scsi²

- C++17 /Pybind 11 python interface
- gtpsa ← mad-ng³
- parser ← flame⁴ (bison/ flex)
- ¹ J. Bengtsson, M. Meddahi, pp. 1021, Epac94,
- ² P. Schnizer, J. Bengtsson, W. Sulaiman Khail, TUPOST029, IPAC22
- ³ L. Deniau, C. I. Tomoiagă, MOPJE039 IPAC15
- ⁴ Z. He, J. Bengtsson, M. Davidaver et al https://arxiv.org/abs/1611.04637

- "First model" as EPICS IOC
- Eng \rightarrow phys with records
- Pydev records (github.com/klemenv/pydev)
 → communication with thor-sci
- Measurement scripts based on bluesky / ophyd
- Next steps:
 - Analysis of code base
 - Use case analysis
 - Mind / apply patterns
 - Modernize code base

BOOSTER EXTRACTION BUMP

MEASURED BOOSTER ORBIT NEAR EXTRACTION - CLOSED BUMP

- Max orbit displacement at the septum from a closed bump: ~9 mm
 - Extraction on 2nd turn after kick
- Orbit displacement at the septum from the unclosed bump: ~15 mm

(estimate based on fitting steering errors to MADX model to get an idea of orbit between BPMs)

SCAN OF SEPTUM RADIATION VS EXTRACTION KICKER STRENGTH, WITH TYPICAL (UNCLOSED) ORBIT BUMP

typical extraction settings (unclosed bump)

SCAN OF SEPTUM RADIATION VS EXTRACTION KICKER STRENGTH, WITH CLOSED ORBIT BUMP

- Usual orbit, and strongest possible closed bump
- beam seemed to be extracted on second turn after kickers fired; to match bucket when injecting into SR, itwas necessary to decrease kicker delay by 320 ns

CLOSED ORBIT DISTORTION AT DIFFERENT WORKING POINTS

Transient synchronous phase

Transient synchronous phase

A FEW STEPS FURTHER TOWARDS BESSY III

