Status of Diamond Light Source and Diamond-II

Richard Fielder on behalf of the Diamond team

30th European Synchrotron Light Source Workshop 14/12/2022

Talk Outline

- 1) Diamond Status:
 - Operations
 - > IDs
 - ≻ RF
 - Zepto quadrupole
 - Energy and efficiency
- 2) Diamond-II Status:
 - Lattice update
 - Commissioning
 - Diagnostics
 - Injection
 - ➤ Timeline
- 3) Conclusions

Diamond Light Source

Diamond Operational Statistics

Courtesy C. Bailey

Diamond Operational Statistics

- MTBF 116 hrs & 98.3 % uptime after 4416 hrs 360 hrs to go at time of compilation
- Comparable to last year, higher MTBF than pre-pandemic
- MTBF decreasing, MTTR decreasing correlation with return to site or just coincidence?

• (As of 12/12/22 MTBF = 113 hrs)

Diamond Operational Statistics

Longest trips:

- Difficult RF reset after power dip, 4.67 & 4.2 hrs
- Drop in water flow to magnet, 4 hrs
- Repairs to Beam off Button Lamps, 2*3.5 hrs
- Cryo-plant trip due to compressed air failure, 3.5 hrs

RF (mainly IOTs) remains most frequent cause of trips

Diamond Covid Response

At time of last ESLS workshop, staff were moving back to office with 2 m spaced desks, masks at all times, PCR and LFT testing on site

As of 13/12/21 all staff advised to work from home where possible

From 31/01/22, staff to resume working on site

Three phase roadmap for relaxing controls:

Phase 1 from 08/03/22 - building swipe access controls relaxed, temperature checking not required Phase 2 from 01/04/22 - user number limits removed, room occupancy limits removed (spacing remains), masks only required in high-throughput areas, PCR testing no longer done on site Phase 3 from 03/05/22 - most restrictions lifted, masks not required in most places, spacing requirements lifted, in-person events resume

Flexible WFH with approval, desk spacing and improved ventilation mostly remains in place, LFT tests available for staff

Many meetings still Teams/Zoom for convenience and due to limited meeting space

Diamond Insertion Devices

Courtesy Z. Patel

New IDs installed in straight 04, replacing existing in-vac ID with CPMU and 0.6m ex-vac with 1.5m HPMU

Downstream girder swapped – BPM/valve moved to make space for longer ID

4-chicane bump to allow re-use of existing 3 chicane magnets despite larger angle required

Large effort from many groups to install and commission in normal length shutdown

CPMU-4 designed, built, and measured in-house 17.6 mm period, 2 m long, 113 periods Beamline report 5 times more flux compared to previous device

HPMU-1 procured from Kyma. 19.7 mm period, 1.5 m long, 78.5 periods Beamline report 9-10 times more flux

Diamond Insertion Devices

CPMU-3 installed January 2022 to replace CPMU-1 that was installed March 2020. Issue with foil buckling when cooled with CPMU-1. Foil tension increased in response, may not have solved problem Both 17.6 mm period, 2 m long, 113 periods

CPMU-1 is being reworked and will be installed next year for I11 instead of the SCU ordered from Budker Institute

CPMU-5 is being built and will be installed next year for VMXm (replaces J02)

Working on an APPLE KNOT design for beamline I05 to reduce heat load on the front end and beamline optics at lower photon energies

Paper in Review of Scientific Instruments: https://doi.org/10.1063/5.0081034

New 3 m long measurement bench (Hall probe & flipping coil) designed, built and commissioned in-house

Diamond RF

Courtesy C. Christou

Solid state amplifier installation is progressing

- 120 kW SSA in storage ring (Cryoelectra) one NC cavity
- 60 kW SSA in booster (Ampegon) second cavity for resilience
- 80 kW SSA in RF Test Facility (Ampegon)

SLED cavity installed in linac

- Flexible LLRF allows arbitrary pulse compression to be generated
 - 2 x power multiplication with 1 μs flat top for multibunch
 - > 5 x power multiplication with spike for single bunch

Digital low-level RF installed with all Solid State Amplifiers

• Also installed on IOT-driven NC cavities

Second generation of DLLRF has been developed

• Replacing unwieldy front ends with MTCA RTF modules

ZEPTO Quadrupole

ZEPTO (Zero Power Tuneable Optics) permanent magnet quadrupole developed at STFC Daresbury Wide tuning range using moveable permanent magnets on fixed yoke - large potential energy savings

Installed in Diamond BTS, with quad-04 turned off

2.5

(1.5

20

HW setpoint (mm)

Parameter	
Magnetic length	300 mm
Good field region	10 mm radius
Max gradient	22.7 T/m
Min gradient	0.3 T/m

See Bainbridge et. al, doi:10.18429/JACoW-IPAC2022-THOYSP1, doi:10.18429/JACoW-IPAC2021-TUPAB365

R Fielder, Diamond and Diamond-II, 30th ESLS Workshop, 14/12/2022

1.55

Diamond Energy and Efficiency

Variety of efficiency measures developed since start of operations - greatest savings from lighting improvements and variable speed drives

- >20% savings compared to predicted costs without measures in place
- Currently replacing experimental hall lights and some offices with LEDs
- Increased ventilation for Covid reduces some gain from air handling

Courtesy P. Coll													
System	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
Light Sensors/Lighting Enhancements	£10,896	£36,322	£89,798	£117,234	£117,234	£117,166	£117,166	£117,166	£141,967	£231,704	£235,973	£266,847	£266,847
Reduction in AHU Operational Hours	£15,603	£31,207	£81,502	£81,502	£81,502	£81,502	£81,502	£81,502	£68,076	£68,076	£68,076	£0	£0
Variable Speed Drive Installation		£793	£209,153	£243,202	£246,911	£254,444	£254,444	£254,444	£357,763	£385,594	£424,646	£546,384	£546,384
Solar Power					£10,878	£10,878	£10,878	£10,878	£10,878	£10,878	£10,878	£10,878	£12,488
Others : DH Tx re-tapping UPS Replacement Chiller Efficiencies Free Cooling Activation Adiabatic Cooling			£3,046	£3,046	£3,046 £3,029	£3,046 £30,294	£3,046 £30,294	£3,046 £30,294	£3,956 £39,343 £50,000 £20,822	£4,300 £39,343 £100,000 £54,317	£4,300 £39,343 £100,000 £54,317	£4,773 £43,671 £100,000 £60,292	£4,773 £43,671 £100,000 £60,292 £12,000
Total Annual Savings	£26,500	£68,321	£383,500	£444,984	£462,601	£497,330	£497,330	£497,330	£692,806	£901,723	£946,655	£1,032,844	£1,046,453
Day/night Averaged Electricity cost (p/kWhr)	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	10.0	10.0	10.0	11.1	12.0
Est. Actual Annual Electricity Costs (exc. Tariffs)	£3,817,627	£3,825,325	£3,789,207	£3,990,495	£4,025,224	£3,852,500	£3,894,061	£4,088,914	£4,349,900	£4,259,700	£4,144,300	£4,205,064	£4,848,000
% of Savings v Actual Cost	0.770	1.070	10.170	11.270	11.5%	12.9%	12.070	12.270	15.9%	21.270	22.070	24.0%	21.0%

Diamond Solar Panel Installation

Two small existing solar panel installations on roof of booster (since April 2013) and Active Material Building (since June 2021) providing 134 kWp total

New installation currently in progress on synchrotron building roof

Phase 1 with 1 MWp

Phase 2 additional 1.7 MWp approved as modification of existing contract

Due to finish May 2023

~5 % of Diamond's power use

Location	Installed capacity	Generated Power (per year)	
Booster Roof	100 kWp	80,000 kWh	
Active Material building	34 kWp	27,000 kWh	
Currently being installed:			
Synchrotron Roof	2.7 MWp	2.3 GWh	

Diamond Solar Panel Installation

Diamond-II

Diamond-II Lattice Update

TDR published October 2022, available for download at - <u>https://www.diamond.ac.uk/Diamond-II.html</u> Lattice as described at ESLS 2021

Additional changes post-TDR:

Removed transverse gradient from longitudinal-gradient dipoles

Minor changes to BPM and corrector positions for engineering reasons

Standalone correctors replaced with octupole at end of long straights (WIP, potential ~10% lifetime increase)

Parameter	Units	Diamond @ 3 GeV	Diamond-II @ 3.5 GeV
Circumference	m	561.6	560.560944
Harmonic Number	-	936	934
RF Frequency	MHz	499.654	499.511
Positive bending angle	deg	360.0	374.4
Reverse bending angle	deg	0.0	14.4
Total bending angle	deg	360.0	388.8
Betatron Tunes	-	[27.21, 12.36]	[54.15, 20.27]
Natural Chromaticity	-	[-79.0, -35.6]	[-67.6, -88.5]
Corrected Chromaticity	-	[1.7, 2.2]	[2.0, 2.3]
Momentum Compaction Factor	×10 ⁻⁴	1.70	1.04
2 nd Order M.C.F.	×10 ⁻⁴	17.6	5.25
Maximum β _x	m	22.7	9.94
Maximum β _v	m	27.0	20.57
Maximum ŋ _x	mm	310.9	80.2
Synchrotron Frequency	kHz	2.29 @ 2.4 MV	1.24 @ 1.42 MV
Natural Emittance	pm.rad	2729	161.7
Effective Emittance in mid-straight	pm.rad	-	237.7
Energy Spread	%	0.096	0.094
Energy Loss per Turn	MeV	1.01	0.723
Natural Bunch Length	ps	11.4 @ 2.4 MV	12.5 @ 1.42 MV
Horizontal Damping Partition	-	1.00	1.87
Vertical Damping Partition	-	1.00	1.00
Longitudinal Damping Partition	-	2.00	1.13
Horizontal Damping Time	ms	11.1	9.67
Vertical Damping Time	ms	11.2	18.08
Longitudinal Damping Time	ms	5.6	16.03
Radiation integral I1	m	0.096	0.058
Radiation integral I2	m ⁻¹	0.882	0.342
Radiation integral I3	m ⁻²	0.124	0.019
Radiation integral I4	m ⁻¹	-0.001	-0.299
Radiation integral I5	m ⁻¹	1.82×10 ⁻⁴	5.76×10 ⁻⁶

Diamond-II Lattice Update

Courtesy H. Ghasem

Investigating injection cell with high beta - no new hardware

Parameters	Units	Base line (43-1-1)	Inj. Cell (43-2-1)				
Energy	GeV	3.5	3.5				
Circumference	m	560.561	560.561				
Tune	-	[54. 149,20.269]	[54. 139,20.210]				
Beta (x,y)	М	(8.21, 3.50)	(17.62, 7.01)				
Nat. emittance	nm	161.5606	164.69				
Nat. chromaticity	-	[-68.1,-89.3]	[-68.6, -88.9]				
TLT	hrs	1.99±0.14	1.68±0.04				
Natural bunch length Note: Inteliment natural bunch length, harmonic cavity expected to increase by factor 3-4							

Potential fall-back option in case of injection problems

May allow lower emittance lattice options or better Twiss matching at ID source points

Large increase in effective dynamic aperture, but now limited by septum aperture

Significant compromise on lifetime - reduced momentum aperture since phase advance not perfectly matched

Diamond-II Commissioning

- Updated errors from TDR
- Reduction in girder misalignment but increase in misalignment of magnets on girder
- Due to more detailed analysis of alignment tolerances by engineering groups _
 (see extra slide)
- Have ordered CMM measurement bench for assessment and comparison with laser tracker system - cost neutral change Expected to reduce multipole alignment error from 46.5 -> 38.2 μm

0									
	Misalignment	Errors	Relative Field Errors						
	Offset	Roll	Main Field	Secondary Field					
	(µm)	(µrad)	(%)	(%)					
Cirdor	150/150	150							
Girder	50/50 ¹	150							
DL	100	100	0.05						
Dipole-Quadrupole	50 100	100	0.05	0.10					
Anti-bend Quad	35 50	100	0.05	0.10					
Quadrupole	35 50	100	0.10						
Sextupole	35 50	100	0.10						
Octupole	35 50	100	0.10						
CM	150 70	150	0.10						
CM (on sext)				0.10					
Skew Quad (on sext)				0.50					

Magnet and Girder Errors

Other Error Sources

BPM Errors							
Offsets	500	μm					
Roll	10	mrad					
Calibration	5	%					
Noise (Turn-By-Turn)	60	μm					
Noise (Closed Orbit)	1	μm					
RF Errors							
Frequency	100	Hz					
Voltage	0.5 1.5	%					
Phase Offset	90	o					
Injected Beam J	itter						
Transverse Displacement	100	μm					
Transverse Divergence	10	μrad					
Energy Deviation	0.1	%					
Phase Shifts	0.1	0					
Other Errors							
Circumference	1	μm					
Injection Pulsed	0.024	%					
Magnet Jitter		,0					

Diamond-II Commissioning

Courtesy H.-C. Chao

Simulated commissioning based Thorsten Hellert's toolkit

Updated procedure able to work on all error seeds (40) without intervention

Additional octupoles may allow to recover lifetime to TDR values despite larger errors

- 1. Beam threading
- 2. RF tuning
- 3. First tuning (using only 7 quad families)
- 4. First BBA
- 5. First LOCO (quads only)
- 6. Second BBA
- 7. Second LOCO (include skew quads)
- 8. Third BBA
- 9. Fourth BBA
- 10. Third LOCO* (include anti-bends and DQ)
- 11. Final tuning* (closed orbit, chromaticity)
- * alternative steps without DQ and AB

diamond 19

Diamond-II Diagnostics

Courtesy L. Bobb

- BPM systems undergoing prototyping analogue front end with pilot tone compensation
- Fast orbit feedback system update rate increased from 10 -> 100 kHz, will have two different corrector types operating at different rates

- Front-end x-ray BPMs; will be included in feedbacks
- X-ray pinhole cameras
- Visible light extraction modified vessel with retractable mirror

See L. Bobb talk, FCCee: Diamond-II, 22 Nov 2022 R Fielder, Diamond and Diamond-II, 30th ESLS Workshop, 14/12/2022

Diamond-II Injection

- 4-kicker bump with thick/thin septum use for commissioning (on- and off-axis injection)
- Multibunch injection to reach full current faster, but not able to eliminate disturbance to stored beam
- Static chicanes to move stored beam closer/further from septum

• Investigating permanent magnet for thick septum

Magnet	Number	Bending angle (mrad)	Pulse shape	Pulse duration (μs)
Thin septum	1	10.5	Sine	>10
Thick septum	1	137.9	Sine	100
Kickers	4	7.2	Half-sine	6
Chicanes	4		DC	n/a

Diamond-II Injection

- Requirement -> "Intensity integrated over 100 µs through 2D FWHM slit 45 metre downstream from source point must remain above 99% of nominal at all times at all beamlines"
- Single bunch injection with aperture sharing injected and stored beam both kicked by striplines, but other bunches see no disturbance
 Parameter
 Value

Parameter	Value
Number required	4
Magnetic length	0.15 m
Full gap	14 mm
Rise time (5-95%)	≤ 1 ns
Fall time (5-95%)	≤ 1 ns
Pulse duration (flat stop, 95-95%)	> 1 ns
Total duration	≤ 3 ns
Peak voltage	± 11.8 to ± 21.0 kV

Striplines and pulsers being prototyped, expect to test in current

ring in ~6 months

Diamond-II Timeline and Funding

- November 2021: Outline Business Case (OBC) for Diamond-II approved by the relevant Gov.
 Dept. and Treasury
- June 2022: first phase of funding for Diamond-II (£95.2m in total) announced, covering 3 years April '22 – March '25, subject to Full Business Case approval
- October 2022: TDR published
- Unfortunately, the total funding cannot increase with respect to what was in the OBC (based on 2020 costs ...), with no allowance for inflation, and the funding profile is a lot flatter than what was planned in the OBC. Consequences of this are:
 - start of Diamond-II shutdown delayed by 1 year to Dec. 2027
 - significant de-scoping e.g. postpone two 'flagship' new beamlines, no linac upgrade etc.
- Full Business Case in preparation on this basis
- Many reviews have to take place next year along the route to funding, aiming for funding approval in July 2023

Conclusions

Diamond

- Back to normal working on site for most staff
- Resumed normal operation schedule for users
- ID and RF upgrades continuing overlap with Diamond-II
- Solar panel installation in progress
- Diamond-II
- TDR published!
- Diamond-II lattice "frozen" still pursuing options for further improvements
- Commissioning and injection looking promising
- Focus now on engineering designs, prototyping in progress for many parts
- Challenges with costs and supply chain

Backup Slides

EXTRA SLIDES

Diamond-II IDs

IDs currently under design:

Purple - flagship beamlines Red - others to be replaced in dark period Green - upgrades before Diamond-II

Beamline	ID	Period (mm)	N	L (m)	Gap (mm)	В (Т)	к	Diamond-II energy range (keV)	Ptot (kW)
111	CPMU-1	17.6	113	2	4	1.4	2.3	9 – 35	9.06
104	CPMU-4	17.6	113	2	4	1.36	2.24	5 – 30	8.55
K02 (VMXm)	CPMU-5	17.6	113	2	4	1.4	2.3	5 – 30	9.06
K04 (XChem)	HPMU-1	19.7	78.5	1.6	4	1.31	2.4	10 – 25	8.01
105	APPLE K-1	200	25	5	21	0.57	10.7	0.010 - 0.24	3.65
102 (VMXi)	CPMU-5*	17.6	113	2	4	1.4	2.2	5-30	8.6
K02 (VMXm)	CPMU-6	17.6	85	1.5	4	1.4	2.3	5 – 30	6.8
109.1	HPMU-3	23	87	2	6.4	0.97	2.1	2.1 – 18	4.4
K21	HPMU-4	18.7	80	1.5	4	1.17	2.1	6 – 14.5	4.8
К16	HPMU-5	18.7	80	1.5	4	1.17	2.1	6 – 45	4.8
106	APPLE II-1 EMPHU	56 65	33 24	2 1.75	19.5 12.5	0.73 0.265	3.82 1.61	0.25 - 2.1 0.5 - 1.7	2.29 0.51
108	APPLE II-2	56	70	3.97	19.5	0.732	3.82	0.25 – 4.2	4.8
110	APPLE II-3	56	70	3.97	23	0.6	3.1	0.35 – 1.6	3.2
K07(B07-2)	APPLE II-4	64	28	1.94	18	0.87	5.2	0.125 – 4.0	3.38
K18	3PW	_	1	2	12	1.4		2 – 30	0.4
I17 CSXID	APPLE II-6	52	94	5	16.5	0.82	3.99	0.25-3.0	7.66
K14 SWIFT	MPW	116	6	0.7	15	1.3	14.1	4 – 35	1.7

Diamond-II Errors

- Analysis of magnet alignment tolerance is in progress by magnet, survey and engineering groups
- Combined uncertainty is currently larger than has been assumed in the commissioning simulations ۲
- Wire holder survey could be improved by replacing laser tracking with CMM bench 17% reduction

Diamond-II Girder Prototyping

Prototyping underway

Prototype 8m girder with dummy magnets for vibration tests, alignment trials etc.

Prototype storage ring vacuum vessels

BPM Digitisation and Processing

Converted to turn-by-turn data Fast orbit feedback (FOFB) and fast archiver
ast orbit feedback (FOFB) and fast archiver
· · · · · · · · · · · · · · · · · · ·
Additional archiver/fault detection
ive EPICS data
EPICS Access 215 MHz IA 4.1 MHz FA, FAP 98 kHz MA, MAP 1 kHz SA, SAP 10 Hz Merge GBE1 FOFB, FA Archiver

BPM System Measurements

- Demonstrates efficacy of pilot-compensation.
- Line at 1.67 mHz and its decaying harmonics are caused by the 10 minute top-up, and are reduced by increasing the attenuation in the D2AFE to improve the linearity.
- Line at 0.5 Hz is the flash rate of a status LED on the AFE modulating the power supply, shows high sensitivity!

BPM System Measurements

- Performance of the Y signal is satisfactory, the X signal is drifting significantly, at times exceeding the target.
- Explained by correlation of channels C and D with humidity
- Investigations underway to answer if this comes from the AFE (under test) or the 1:4 splitter (used for testing)

Diamond-II Collective Effects

Single bunch dynamics simulated in Elegant - one turn map with lumped impedance Resistive wall, geometric impedance calculated using 0.5 mm bunch length, flat-potential harmonic cavity Stable for standard (0.3 mA) and hybrid (1.6 mA) fill bunch charge conditions at nominal 2/2 chromaticity

Diamond-II Collective Effects

Multibunch dynamics also mainly simulated in Elegant

Resistive wall impedance greatest effect

Investigating length of geometric wakes required - multiple turns?

RF cavities included as modes from S-parameter analysis - too big for wakefield simulation

Stable when including harmonic cavity and with chromaticity 2/2

Detailed simulations including realistic multibunch feedback in progress

	Uniform fill, cl long range im	, chromaticity 0, impedance only (/s)		Largest growth rate (/A/s)	Estimated threshold (mA)	
	Onen IDe	Horizontal	103.5	1622	63.8	
	Open IDs	Vertical	55.2	3390	16.3	
		Horizontal	176.7	6993	25.3	
Close	closed IDS	Vertical	128.5	10505	12.2	

Diamond-II Collective Effects

Transient beam loading and bunch charge variation with the harmonic cavity

- 5 bunch trains with gaps of 7 buckets
- Charge variation depending on injection frequency, lifetime

Single bunch hybrid more challenging - may require higher charge guard bunches

Bucket

800

Ion simulations ongoing, investigating best way to spread interaction points - very compute intensive Stable with same gaps required for beam loading

R Fielder, Diamond and Diamond-II, 30th ESLS Workshop, 14/12/2022

0

200