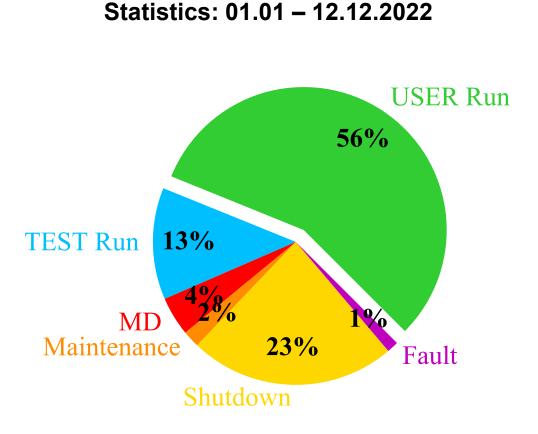
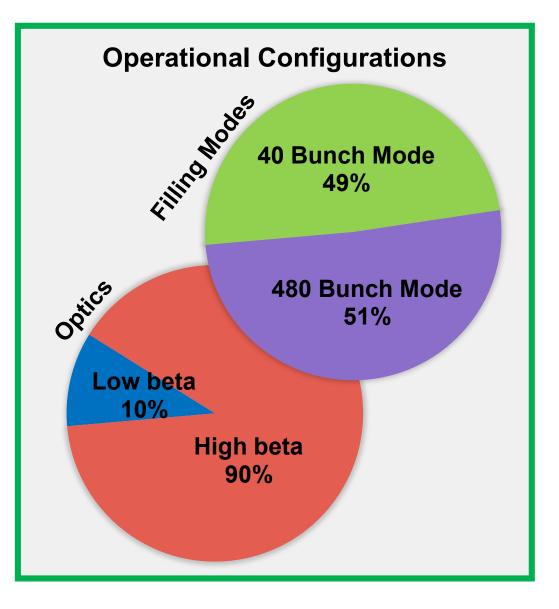


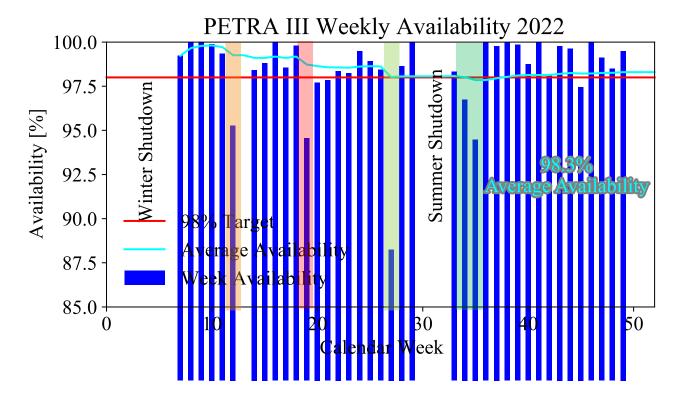
Michael Bieler for the PETRA III / PETRA IV Team

<u>Thank you for the support and discussions</u>: R. Wanzenberg, M. Schaumann, G. Kube, D. Haupt, H. Ehrlichmann, J. Keil, G. Sahoo, R. Onken, R. Bartolini.




Contents

- Operation, Availability & Failure Analysis for Feb-Dec 2022
- PETRA-IV studies at PETRA III
- Energy saving options and studies
- Upgrade plans, PETRA IV


4640 h of User Time Delivered 16.2. – 12.12.2022

144 h more planned between 13.12.-18.12.2022

2022: Availability of 98.3%

Few major failures and troublesome period of 2 weeks after summer shutdown

W12: Power Glitch (duration 3h30)

W18: Faulty triggers of injection kicker (duration 4h05)

W27: Main power station B over-voltage problem *(duration 16h20)*

W34-35: Several independent failures:

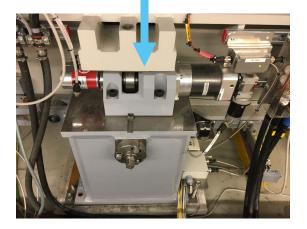
- Power supplies
- Top up stops
- Cavity trips
- Cooling water
- Vacuum at experiments

MTBF: 57.3 h

MTTR: 1 h

5 Weeks of User Run remain in 2022

3 days of PETRA IV study time before winter shutdown


Image:	A SIGNAL											. 18 11 2022 113			-		Sunday/ Bank holiday
Image: Non-operating the second se	1	January										October					
2 A 0		IXS 2022 I	S 2022 II)			IIX S 2022	EXS 2022	1	XS 2022	NS 2022	2022	EXS 2022	EX X	2022	HXS 2022		
1 A 1 B A 1 B A 1 B A 1 B A 1 B A 1 B A 1 B A 1 B B A 1 B B A 1 B B A 1 B B A 1 B B A 1 B B A 1 B B A 1 B B A 1 B B A B B A B B B B A B			IE NG		SRI IB tr	40		1		A R	40	multi		40	multi	1	
A A B			IB			40		2	multi β	A R	40	multi			multi	2	
s A a		A		nulti β StrS		40	A	3	multi β	A R		multi		10	multi	3	
Image: second		A		nulti β StrS	40	A		4	multi β			multi			multi	4	
Image: Construction of the second of the		A	IB	<mark>nulti</mark> β	40	40		5	multi β	A R		A		40	multi	5	
A B	6	A			40	40		6	A	A		multi			multi	6	
A B	7	A	IB	<mark>nulti</mark> β	40	40	IB	7	multi	A	A	multi			A	7	
A NV <	8	A	IB	<mark>nulti</mark> β	40	40	tr	8	multi	A R		multi		40	multi	8	
Image: Stress of the stress	9	A		A	40	40	multi	9	multi	A R	IB tr	multi		A	multi	9	4
1 1	10	A IEV		40	40	40	multi	10	multi	IB	tr	A		40	multi	10	
A v v v v v v v v v v	11	A IEV	IB tr StrS	40			multi	11	multi	IB	tr	A			multi	11	
4 4	12	A		40	A	40	multi	12	multi		multi	A		40	multi	12	
is with siss	13	A		40			multi	13		tr / IB	multi				multi	13	
b b c c c c c c c c c c	14	A IEV	tr StrS		A	40	multi	14	multi	tr	multi	IB tr			multi	14	
Image Image <th< td=""><td>15</td><td></td><td>tr StrS</td><td>40</td><td></td><td>40</td><td></td><td>15</td><td>multi</td><td>tr</td><td>multi BetrFest</td><td>tr</td><td></td><td></td><td>multi</td><td>15</td><td></td></th<>	15		tr StrS	40		40		15	multi	tr	multi BetrFest	tr			multi	15	
No nett sus 00						40	multi	16	multi	40	multi	tr		Α β	multi	16	
No multi-sus- readi 40 nulti-sus- readi 40	17	IMV	multi StrS	40		40	multi	17	multi	40	multi	40		β	multi	17	
No nutti 40 nutti 21 nutti 40 10 10 10	18	NG	multi StrS			A	multi	18	A R	40	multi	40		lBtrβ	multi	18	
No nutti 40 nutti 21 nutti 40 10 10 10	19	NG	multi	40	IB	40	multi	19	A R	40	multi	40			GIRD	19	
22 1 M 5 sts 40 40 M 22 A R 40 multi 40 multi 6 22 24 1 M 1 20 1 A R 40 multi 40 multi 6 22 A R 40 multi 40 multi 6 22 A R 40 multi 6 22 A R 40 multi 6 1 24 A R 40 multi 6 0 1 24 A R 40 multi 8 25 A R 40 multi 8 26 A R 40 multi 8 26 A R 40 multi 8 26 A R 40 multi 8	20	NG	multi	40	tr IB	40	multi	20	A R	40	multi	40		tr β	GIRD	20	
22 1 M 5 sts 40 40 M 22 A R 40 multi 40 multi 6 22 24 1 M 1 22 A R 40 multi 40 multi 6 22 24 A R 40 multi 40 multi 6 22 24 A R 40 multi 6 24	21	IEV NG	multi StrS	40	40	40	multi	21	A R	40	A	40		multi β	GIRD	21	
22 1 Mall β 40 mult 21 A <td< td=""><td>22</td><td></td><td>multi StrS</td><td>40</td><td>40</td><td>40</td><td>A</td><td>22</td><td>A R</td><td>40</td><td>multi</td><td>40</td><td></td><td>multi β</td><td></td><td>22</td><td></td></td<>	22		multi StrS	40	40	40	A	22	A R	40	multi	40		multi β		22	
24 M multi β strs A stlprep 40 multi 24 A R A multi 40 multi β 25 27 10 multi β stlprep 40 multi 26 A R 40 multi β 27 27 A Stlprep 40 multi 27 A R 40 multi β 27 27 A Stlprep 40 multi 27 A R 40 multi β 27 28 27 28 27 28 27 28 28 29 <t< td=""><td>22</td><td></td><td></td><td>40</td><td>40</td><td>40</td><td>multi</td><td>23</td><td>A</td><td>40</td><td>multi</td><td>40</td><td></td><td>multi β</td><td></td><td>23</td><td></td></t<>	22			40	40	40	multi	23	A	40	multi	40		multi β		23	
 Shortest possible winter shutdown: → 4896 h of user run scheduled 	24	IM	multi β StrS	A SRIprep	40		multi	24	A	A	multi			multi β		24	
 Shortest possible winter shutdown: → 4896 h of user run scheduled 	25	IM	multi β StrS	A SRIprep	40	40	multi	25	A R	40	multi	40		multi β		25	
 Shortest possible winter shutdown: → 4896 h of user run scheduled 	26	IE NG	multi β		40	40	multi	26	A R	40	multi	A		multi β		26	
 Shortest possible winter shutdown: → 4896 h of user run scheduled 	27	IE NG	multi β			40	multi	27	A R	40	multi	40		multi β		27	
 Shortest possible winter shutdown: → 4896 h of user run scheduled 	28	IE NG	multi β StrS		40	40	multi	28	A R	40		40		multi β		28	Olada a secondaria e secondaria
 Shortest possible winter shutdown: → 4896 h of user run scheduled 	29			A SRI	40	40	β		A R	40	multi	40		multi β		29	Girder movement
 Shortest possible winter shutdown: → 4896 h of user run scheduled 	30				40	40			A	40	multi			A		30	
 Shortest possible winter shutdown: → 4896 h of user run scheduled 	31	IE NG		SRI IB		40		31	A			40				31	experiment in Max
Shortest possible winter shutdown: → 4896 h of user run scheduled	· · ·		··· · · · · · · · · · · · · · · · · ·		•												-
Shortest possible winter shutdown: → 4896 h of user run scheduled																	von Laue Hall
\rightarrow 4896 h of user run scheduled			•														
\rightarrow 4896 h of user run scheduled	C	boutee	h no oo ih		tox ob												
\rightarrow 4896 h of user run scheduled	2	nortes	l possid	ne win	ier snu	ιαοψη											
	_	→ 4896	n or use	er run s	cnedule	a											
						0			al a como c								

Summer shutdown: Repair of cooling tower Studies/Commissioning A (A) Test run tr No operation A (A) User run Working day Saturday Sunday/ Bank boliday

3 Days of Study for PETRA IV Girder Alignment System

Girder Movement Test in PETRA III Max von Laue hall planned for 19.-21.12.2022

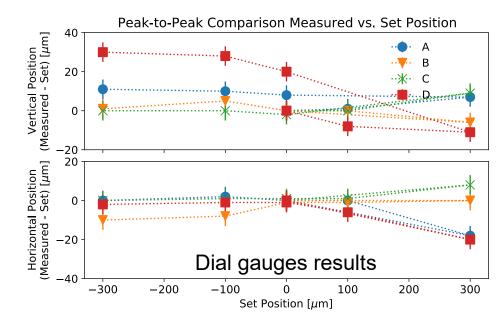
PLAN

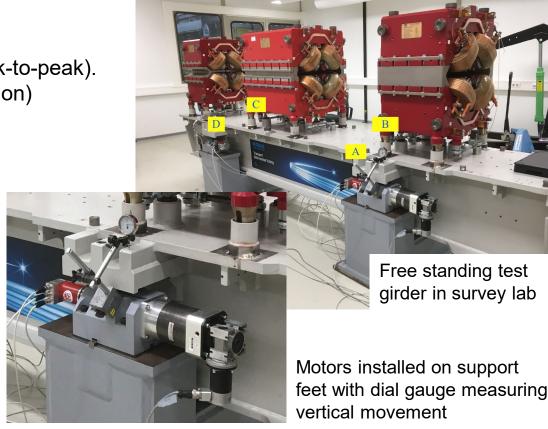
Move ONE girder in Max von Laue hall with the remote-controlled motors up to +/- 300 μ m.

GOALS

- a) Study girder movement to orbit correction response
- b) Input for design of PETRA IV automatic girder alignment system
 - Identify technical requirements and limitations
 - Gaining experience and confidence in remotely moving girders
 - Development of required procedures for PETRA IV

CHALLENGES


Girder alignment system not intended for movements after the initial installation phase of PETRA III (2009)


- Fixed vacuum joints between girders
- System *unused* and not connected since 2009
- Movement and verification procedure not performed for many years.

Successful Dry Run for Girder Movement Test on 19.10.2022

Initial tests confirmed practicability & accuracy of planned procedure

- Laser tracker and dial gauges measured the movement.
- Input of signs and units have been crosschecked.
- Accuracy of requested position within +/- 20 μ m 30 μ m (peak-to-peak).
- For only transverse movement (no rotations, longitudinal fixation) starting position is recovered within the same accuracy.

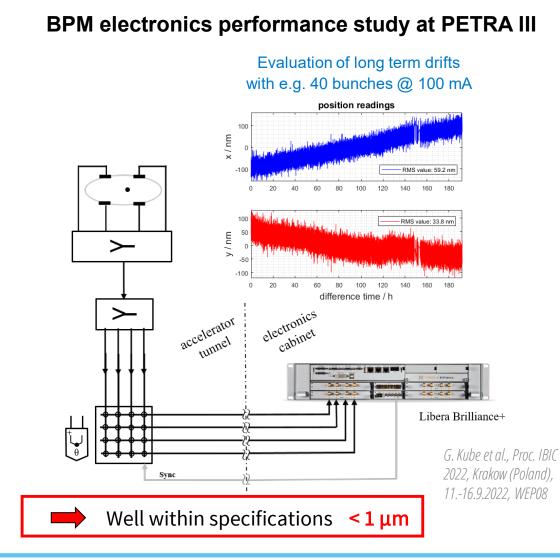
Analysis of dry test and planning of tunnel test are ongoing.

PETRA VI Prototype Test Program continues in PETRA III

Successful preparation and installation work ongoing

Installation work during summer shutdown Jul/Aug 2022 in South Right (SR).

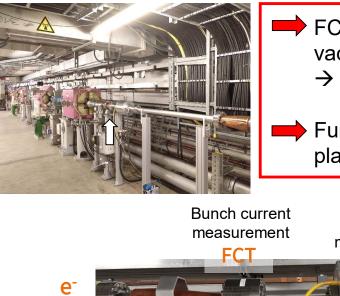
- SR cavity section had to be vented
- New beam pipes and valves installed
- Preparation for the PETRA IV prototype cavity (installation in coming winter shutdown).
- Installation of two current monitor types.

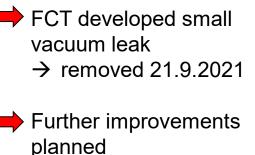


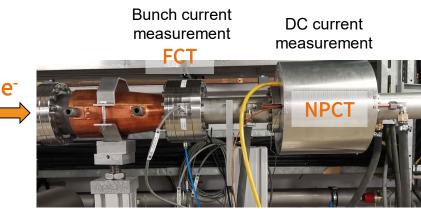
WP 2.12: RF Systems

WP 2.05: Diagnostics

Progressing Studies of PETRA IV Diagnostics


BPM electronics and Beam Current Monitors are being tested




New Diagnostic Section in PETRA III

G. Kube

Test section (Ø 60mm) installed in PETRAIII SR during summer shutdown (July/August 22)

Low Beam-Energy Operation could Reduce Energy Consumption

PETRA III: ~85% of the energy is consumed by magnets and RF

Options to reduce energy consumption for the PETRA III complex:

- Increase time between top up injections, meanwhile switch off injectors
 - → Test beam operation at DESY-II
 - → Operationally challenging if LINAC is not in thermal equilibrium, degradation of reliability expected
- Reduce RF power consumption by reduction of beam current and/or RF voltage
 → needs optimization of working point
- Reduced energy operation

 → operation @ 5 GeV could save ~20%
- Extend shutdown periods (no beam operation)

5 GeV Operation with 480 Bunches seems Feasible

Lifetime Reduction at 5 GeV prevents 40 Bunch Operation

Achieved Beam Performance

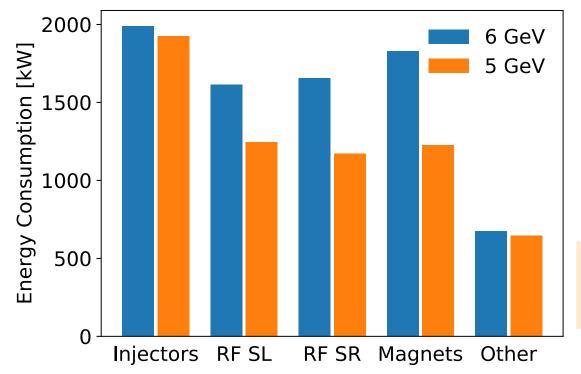
	Standard	Studien
PETRA III	Parameter	09.09.2022
Strahlenergie / GeV	6	5
Emittanz / pm rad	1300	ca. 850
HF Spannung / MV	19	15
Multibunch Mode		
Anzahl der Bunche	480	480
Strahlstrom / mA	120	100
Strahllebensdauer / h	10	3.5
Timing Mode		
Anzahl der Bunche	40	
Strahlstrom / mA	100	
Strahllebensdauer / h	1.5	

Tests done with 480 bunches, 100mA for 2 days

Significant lifetime reduction at 5 GeV observed

→ Expected lifetime with 40 bunches too low for reasonable operation

Reduction of emittance confirmed:


 Horizontal emittance: theoretical 750 pm rad measured ~800 pm rad

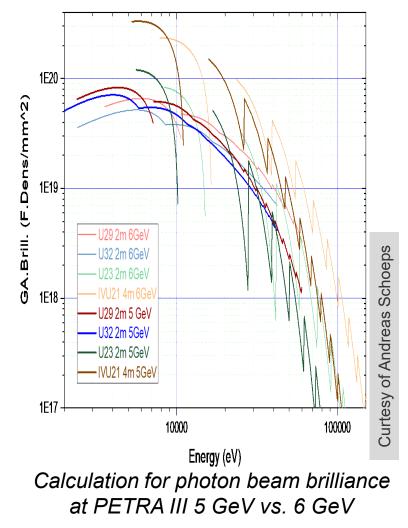
@ 6 GeV, ~1300 pm rad

• Vertical emittance: uncertain (limitation of measurement)

5 GeV Operation Requires ~1.5 MW less Power than 6 GeV

This corresponds to ~20% of the used power of the whole PETRA III complex

Energy saving potential of reducing the beam energy from 6 GeV to 5 GeV:


→ ~25% only PETRA III
 → ~20% all PETRA III complex

Based on data taken
6 GeV: 15.08.2022 09:55
5 GeV: 09.09.2022 12:35

Drastic Reduction of High Energy Photon Intensity at 5 GeV

Successfully delivered 22 h of 5 GeV Test Run to Beamlines

PETRA III: Brill. Comparison 5GeV vs. 6GeV

Observations

Photon energies

- 2 < E < 5 keV a small increase of intensity, factor 1.25
- 8 < E < 20 keV: losses of factor 2 to 5
- E > 20keV: losses of factor 10

Conclusion from beamlines

→ Almost all beamlines would suffer
→ Loss for beamlines vs. saving is unreasonable
→ 5 GeV is NO option for the user run.

Injectors Power Consumption Reduced by up to 150kW

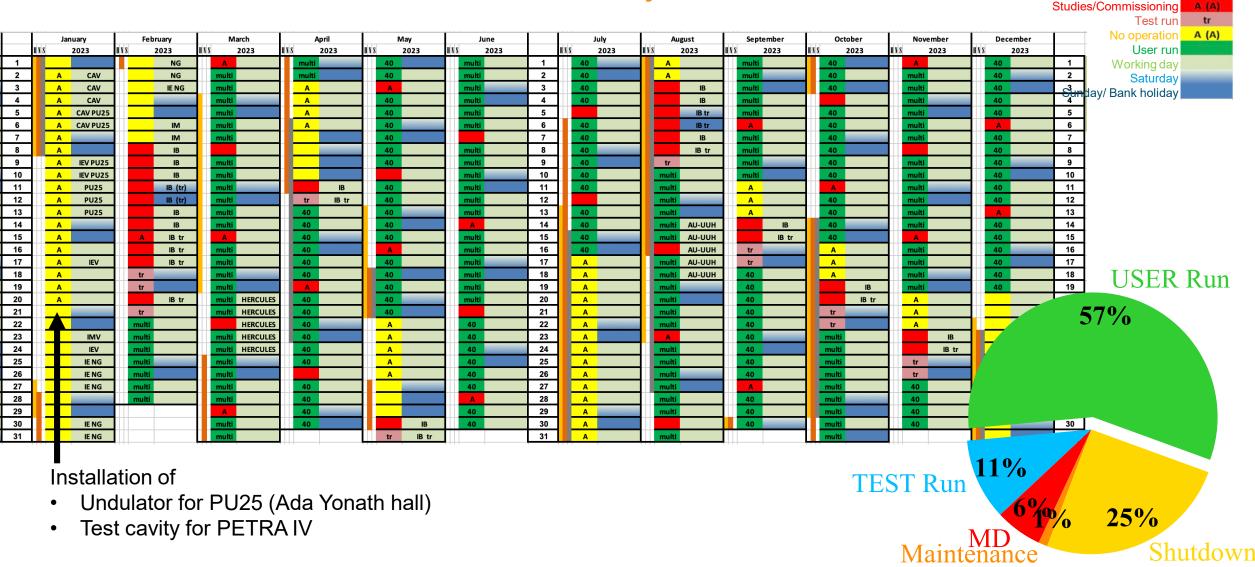
Further options are being investigated

Implemented measures:

• Reduction PIA energy 450MeV \rightarrow 400MeV: -25 kW

→ Switch off LINAC-II redundancy (≤5/12 klystrons off): -5x25 kW = -125 kW
→ no hot-spares, could influence availability
-150 kW

Measures under investigation:


- Reduction DESY-II peak cycle energy 6.3 GeV → 6.0 GeV
 → Negative for test beam users: need high energies
- Optimization of klystron working point:
 ???
- Reduction LINAC-II rep-rate 50Hz → 10Hz
 > Influence on PIA accumulation

H. Ehrlichmann

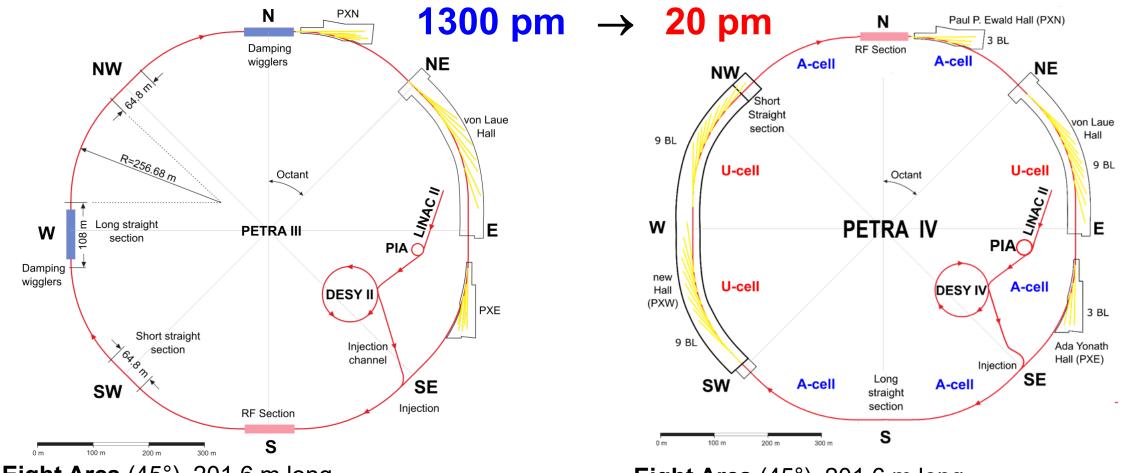
D. Haupt


Draft Schedule for 2023 foresees 4992 h of User Time

Installation of new undulator and PETRA IV test cavity

PETRA III is one of the core facilities at DESY

Each year ~5000h users operation serve more than 2000 users


Parameter	PETRA III
Energy [GeV]	6
Circumference [m]	2304
Emittance (hor./vert.) [nm]	1.3 / 0.013
Total current [mA]	100

PETRA IV project:

replacing PIII with an ultra low emittance ring (20 pm) adding a new Experimental Halls in two more octants

DESY. | PETRA III Operations | Michael Bieler, 14.12.2022

From PETRA III to PETRA IV

Eight Arcs (45°), 201.6 m long

One arc build from 9 <u>**DBA cells**</u> L_{cell} = 23 m, 5 m ID straight sections 5 pure FODO-arcs + 2 modified FODO arcs with 2 **DBA cells**

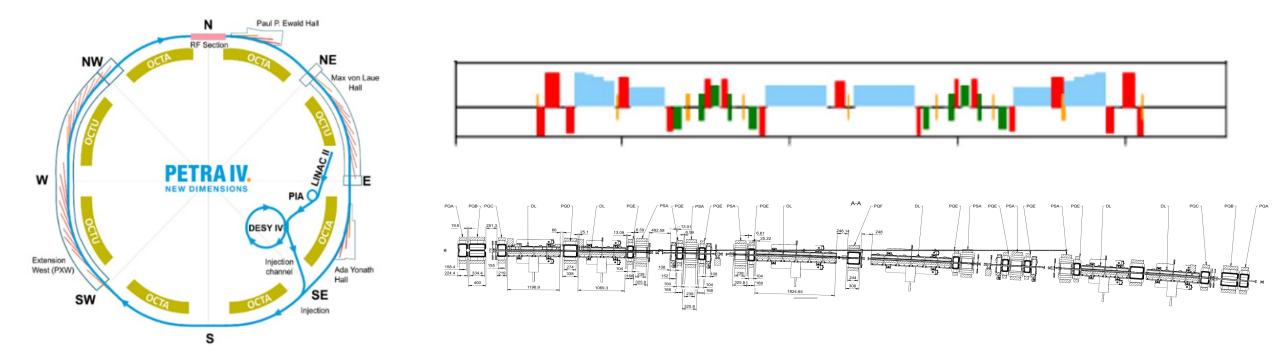
Beamlines

Max von-Laue Hall:14; PXN:5; PXE: 7

Eight Arcs (45°), 201.6 m long

72 cells ESRF-EBS <u>H6BA cells</u>

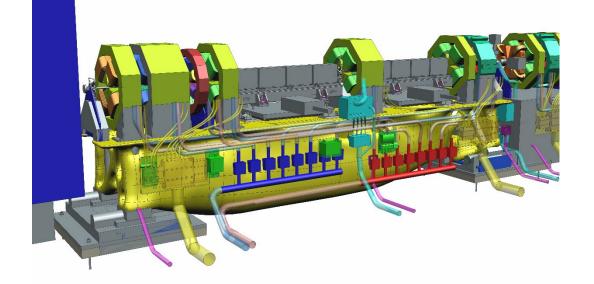
9 cells per arc L_{cell} = 22.75 m, 4.3(TBC) m ID straight sections

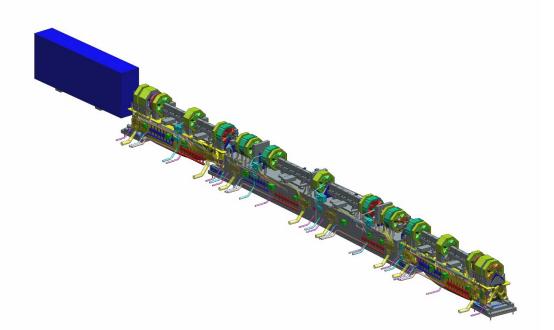

Straights for Beamlines

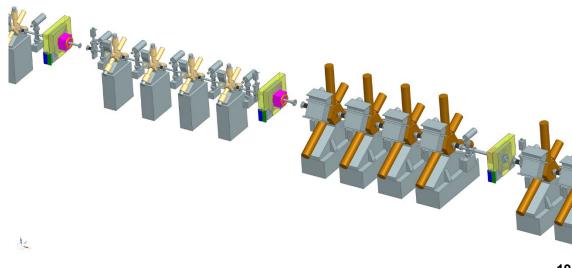
Max von-Laue Hall: 9; PXN: 3; PXE: 3 + New Hall: 9 + 9(8)

PETRA IV accelerator lattice

The PETRA IV accelerator lattice fulfills all the requirements to produce X-ray beams with unprecedented brightness. PETRA IV will be the world leading machine.

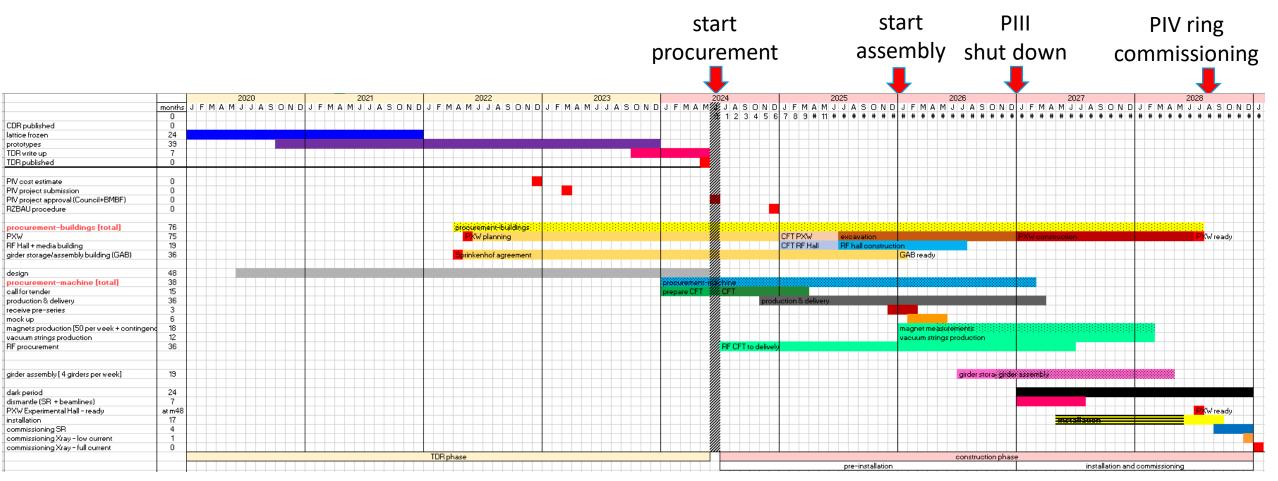

The lattice is based on a novel cell structure (H6BA) that is replicated identical across all octants (72 cells) achieving 20 pm electron beam emittance with >10h beam lifetime and off axis injection.




Engineering integration of the cell in progress (TDR)

Ongoing work:

- engineering integration of all components in the cell on the girders
- check on space envelope and clashes
- design of the extraction photon pipe
- implementation of the canted photon beamlines
- implementation of RF section
- implementation of services



PETRA IV project schedule The draft breakdown below hinges on

- Project approval in mid 2024
- Call for tender placed in mid 2024
- Dark period ~24 months
- First light in Jan 2029

Conclusions

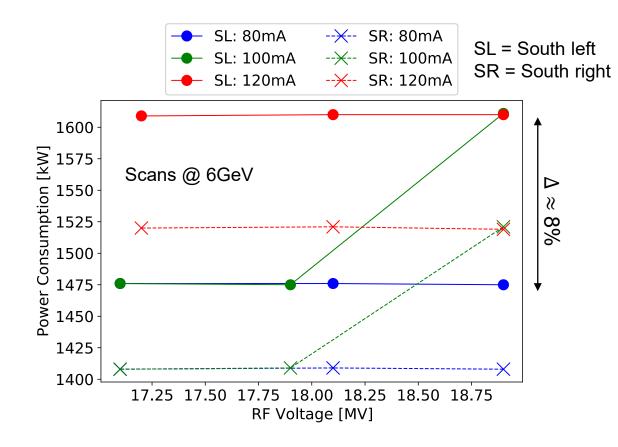
- PETRA III operates with high availability
- PETRA III supports development of PETRA IV with study beam time wherever possible
 - RF and diagnostics installations done in summer shutdown
- Beam operation @ 5 GeV could reduce the PETRA III complex power consumption by ~20%, however performance loss vs. saving potential seems unreasonable for beamlines and users.
- The PETRA IV project is in the TDR phase, approval in 2024?

Thank you for your attention

Contact

DESY. Deutsches	Michael Bieler
Elektronen-Synchrotron	MBB
	bieler@desy.de
www.desy.de	0049 40 8998 3805

Comparison Energy Consumption: 6 GeV vs. 5 GeV


Main contributions are magnet current reduction and required RF power

	PETRA III	PETRA III		
	15.08.2022	09.09.2022	Differenz	relative
	9:55	12:35	15.08-09.09	Differenz
Energie / GeV	6	5	1.0	16.7%
Strahlstrom / mA	100	100	0.0	
HV-Spannung / MV	19	15	4.0	21.1%
Leistungsaufnahme / kW				
Geb 47c Sektoren	204.4	200.0	4.4	
Geb 47c Halle	314.4	282.0	32.4	
Geb 47 c Tunnelelektrante	156.0	163.8	-7.8	
Geb 47 c Magnetstrom	135.2	94.0	41.2	
Sender SL	1614.1	1244.8	369.3	
Sender SR	1657.0	1173.0	484.0	
Magnete	1695.3	1131.0	564.3	
Summe PETRA III	5776.4	4288.6	1487.8	25.8%
Vorbeschleuniger				
LINAC II	973.9	910.2	63.7	
DESY Sender	516.4	516.0	0.4	
DESY Magnete (geschätzt)	500.0	500.0	0.0	
Total	7766.7	6214.8	1551.9	20.0%

Power consumption at 6 GeV vs. 5 GeV

Comparison Energy Consumption: 6 GeV vs. 5 GeV

RF Voltage and Beam current scan

Power consumption of RF transmitter at 6 GeV with 480 bunches for different beam currents and RF voltages

PETRA III,	6 GeV, 480 I	Bunche		
21.09.22			Sender	eistung
Zeit	Strom/mA	Spannung/MV	P_SL/kW	P_SR/kW
16:00	80	18.9	1475	1408
16:05	80	18.1	1476	1409
16:10	80	17.1	1476	1408
16:20	100	17.1	1476	1408
16:23	100	17.9	1475	1409
16:26	100	18.9	1611	1521
16:32	120	18.9	1610	1519
16:36	120	18.1	1610	1521
16:39	120	17.2	1609	1520

Power Consumption at DESY

15.08.2022, 40 bunches, 100 mA (Reference) http://cssweb.desy.de:8084/sdsweb/display/LastmanagementVariant

Lastmanagement DESY		Ron 15 Aug 2022 09:55:22				
DESY		25		Leistungsmaximum	21.7 MW	
DESY Sender Süd ***	516.42 kW	15 111111111111111111111111111111111111	35	Gesamt DESY *	20.25 MW	
DESY Sender Nord ***	0 kW	10	1,35	15 Min-Wert SOLL	68.89 %	
PETRA		10 2	40	15 Min-Wert IST	62.65 %	
Geb 47c (MvL) Sektorenversorgung Normalnetz	204.4 kW	20.253	45	Generator in Betrieb		
Geb 47c (MvL) Versorgung Halle 314.4 kW		MW		Generator gestört		
Geb 47c (MvL) Tunnelektranten z.B. Vakuumpumpen	156 kW	0 /	50	Teststände		
Geb 47c (MvL) Magnetstromversorgung	135.2 kW			DESY Sender Süd Test ***	0 kW	
PETRA Sender Südlinks ***	1,614.12 kW			DESY Sender Nord Test ***	0 kW	
PETRA Sender Südrechts ***	1.656.97 kW	Trend		AMTF Helium-Kompressoren **	0.93 kW	
PETRA Magnete ***	1.695.26 kW	LINAC		AMTF Modulator 1 **	0 kW	
	1,000.20 111	LINAC (Beschleuniger und Infrastruktur)	973.9 kW	AMTF Modulator 2 **	0 kW	
Kryogenikanlage Kryogenik FLASH /AMTF	Gryogenikanlage			AMTF Modulator 3 **	0 kW	
	1,525.98 kW	Kältering Kältezentrale 47d		AMTF Modulator 4 (WATF) ** Gebäude 38 Undulatortesthalle **	0 kW	
Krogenik XFEL (1. Str)	3.02 kW	Kältezentrale LINAC **	0.4 kW		15.14 kW	
Grogenik XFEL (3. Str) 2,306.11 kW		Rechenzentrum		DORIS CaTs-Sender (MHF-e) ***	0 kW	
		Rechenzentrum	1,241.06 kW	Geb 70 IOT Sender Gleichr. (MHF-e) ***	0 kW	
		FLASH		Fenster-Teststand FLASH H3 (MHF-p) ***	0 kW	
		Kälteanlage FLASH 2 **	137.97 kW			
		Modulator 2 (ACC1 H3) ***	0 kW			
		Modulator 3 (Gun H3) ***	0 kW			
		Modulator 4 (ACC6+7 H3) ***	0 kW			
		Modulator 5 (ACC4+5 H3) ***	0 kW			
		Modulator 6 (ACC2+3 H3) ***	2 kW			
* Desy ohne XFEL Beschleuniger, Kryd Kryogenikanlage zu sehen. ** Berechnete Werte (Ermittelt aus Stro *** Hergeleitet aus Daten des Kontroll	ommessung)	überprüf	r eitiger Lastüberschr en. Auf Grund von Sy	reitung bei DESY, bitte zunächst den XFEI inchronisationsproblemen, kann es zu "u , wenn bei XFEL mehrere MW hinzugesch	nechten" Peaks	

PETRA III is Study Framework for PETRA IV Development

Diverse studies involve several groups and work packages

WP 1.12:

Accelerator Foundation

WP 1.01:

Civil Construction

WP 2.01:

Accelerator Physics

WP 2.07:

Alignment

WP 2.10:

Accelerator Controls

WP 2.04:

Vacuum Systems

WP 2.12:

RF Systems

WP 2.05:

Diagnostics

Beam stability concepts

- Monitoring of environmental parameters
- Evaluation of ground vibrations
- Orbit analysis
- Modelling of data
- Girder movers

Accelerator physics / beam dynamics

- Test of commissioning strategies
- High level software
- Test of algorithms
- Impedance model

Technical subsystems

- RF system
- Diagnostics

Selection of studies planned for 2022

Implementation of alternative methods to measure optics, chromaticity and coupling

Impact on orbit when moving a girder (December 2022)

Vibrations due to civil construction (mid 2022)

Installation of diagnostic components: Current monitor, BPM (summer shutdown 2022)

Preparation for PETRA IV test cavity (installation in 2023)

Diverse Studies at PETRA III support PETRA IV TDR

PETRA IV resources support studies at PETRA III

Performed 2021

Truck movement \rightarrow impact on orbit

Correlation of temperatures with mechanical measurements in the tunnel

Correlation with orbit data

First turn threading, test of software interface

Collaboration with SLAC robust conjugate direction search (RCDS)

Collimator wakefields

Installation of waveguides for the cavity test Preparation for the solid state amplifier

Test of new BPM electronics (new Libera hardware) Diagnostic test with 2 ns bunch filling pattern

Planned for 2022

Implementation of faster methods for optics, coupling and chromaticity measurements
Development of machine learning tasks
Test to move a girder \rightarrow impact on orbit
Vibration test for PXW Hall construction
Installation of a solid state amplifier of cavity postponed
Preparation for the installation of a single Cell 500 MHz PETRA IV cavity
Installation of diagnostic components: Current monitor, BPM (summer shut down 2022)

Curing of crack between tunnel segments in SWR 37