

Felix Armborst & Jonas Kallestrup on behalf of the SLS & SLS 2.0 Teams

SLS Status and SLS 2.0 Upgrade

30th European Synchrotron Light Sources Workshop, Grenoble, December 14th - 15th, 2022

- I. SLS Status
 - 1.
 - 2.
 - Crises 3.

II. **SLS 2.0**

- Synchrotron Radiation at PSI 1.
- SLS 2.0 Milestones 2.
- Machine Highlights 3.
- Brightness and IDs 4.

SLS Operation Statistics 2022

The year 2022 was troublesome (up to 1. Nov. 2022 = 85% of planned operation)

- Beam availability 97.1% so far
- More and longer outages

SLS Operation Statistics 2022

- Many outages due to system upgrades, partly related to the SLS 2.0 project
- Upgrades require in-situ testing (vxWorks, EPICS, BPM electronics, ...)
- Reduced maintenance due to experts working on new systems

- Feedbacks: BPMs, FPFB/Timing &
- Controls: updates (vxWorks, EPICs, ...)
- Mag. PS: Ventilators, Controllers & 1

- ARIVA-MP07-M1:PRESSURE LT ----- ARIVA-MP07-M2:PRESSURE LT

ARIVA-P

		Situation acc. to Epidemic Act	Situation/ Scenario PSI	Description	Empl. on campus (Ø PSI)	Management
RALL 04 04 2022		Normal Situation	Business as usual	The operation of PSI runs without significant or general restrictions.	«100%»	Usual management rhythm Directorate - Divisions
DAU IOI	01 07 2021	Special Situation	Limited Operations I	 Business trips and visits (to and from certain countries) are being restricted Ordered home office as well as precautionary home office and officially ordered quarantine and isolation for returnees and affected persons 	up to 100% (effectiv. 70% to 100%)	100% tiv. o 100%) At the beginning of the pandemic, the divisions still have a large degree of autonomy within the general guidelines of the Pandemic Team on behalf of the Director. As the
	01.07.2021	Special Situation / Extraordinary	Limited Operations II	 Business trips and visits are limited to what is necessary and largely replaced by telephone and video conferencing solutions General guidelines for action, in particular 	40% to max. 50%	
LO II+	20.04.2021 🔾	Situation		 split offices und split teams, limited number of people per room home office for personnel not urgently needed on site 	60%	
LO II 11.05.2020	J		 wherever possible, meetings are moved to the web, with a focus on collaboration tools Definition of «vital services» operated on behalf of the Pandemic Team 		situation escalates, more and more competences are transferred to the	
	16.03.2020) Limi Ope	Limited Operations III	LLO II plus further restrictions in operation: business trips and visits are suspended, extensive home office, certain operating units are being closed.	15% to 20%	Pandemic Team. Once the situation has
		Extraordinary Sleep Mode Situation	Corresponds largely to the operation over the festive season, but for a longer period. Only explicitly defined units are still in operation. As in LO III, it must be ensured that no damage is caused to equipment and facilities (monitoring and minimal maintenance of the infrastructure).	max. 5%	pandemic team prepares the transition to normality by gradually loosening measures.	
			Lockdown	PSI is closed and secured. The whole communication is digital.	SIZ plus maintenance	

Somewhat fortunate situation at PSI for 2023 / 2024 thanks to energy **hedging** policy

Year	Purchased Energy	Price exkl. grid cost	Coverage ratio according to forecast from Q1-22
2023	131'697 MWh	75.89 CHF/MWh	103 %
2024	116'504 MWh	92.36 CHF/MWh	104 %
2025	85'541 MWh	83.80 CHF/MWh	70 %
2026	35'040 MWh	91.55 CHF/MWh	ca. 25 %

120 kW emergency diesel generator to avoid helium loss and long downtime of proton therapy facility after **black out**

Energy Saving Measures

SLS (670 MWh + 4500 MWh from Darktime)

- ➤ Jan. shutdown: + 10 days
- March shutdown: + 8 days, April shutdown: -3 days
- Darktime: fixed to start 2. Oct. 2023
- ➤ (SLS 2.0 with 30% reduced power consumption)

SwissFEL (625 MWh)

- Jan. shutdown: +1 week
- March shutdown: +1 week, April shutdown: -1 week
- 3 weeks with reduced RF rate or turned off Linac 3

HIPA (4650 MWh + 900 MWh)

- Shutdown extended +2.5 week
- ▶ Possible reduction of beam current: 1.8 mA \Rightarrow 1.6 mA

Non-accelerator facilities (2750 MWh)

→ ~14 GWh saved 2023
 → Critical Q1 defused by shifting shutdowns thus reducing energy costs

Helium Shortage 4.0

- Only 14 plants in total
- ExxonMob • 2-3 plants provide 80% of supply
- Multiple supply disruptions
 - Gas leaks, fires and explosions
 - Sanctions against Russia

PSI situation

- Currently no Helium available on the market
- All storage tanks are filled as of now
- In spring 2022 additional bundles of bottles were purchased with foresight

Doe

Canyon

hor

- Helium reserve at PSI will last until early summer 2023
- Situation for other large customers more critical
- PSI no longer supplies its own helium to third parties
- Service for liquefaction is kept up
- Prioritisation / allocation are also being considered at PSI

Magnet Cross-talk

- Dense lattice
 - Cross-talk between neighbouring magnets
 - Performance evaluated for magnet groups
- Static effects

Due to existence of neighboring magnets

• Dynamic effects

Due to excitation of neighboring magnets

- Correction f
 - > Targets
 - Beam path (x,x')
 - Linear optics
 - Nonlinear optics
 - ≻ Knobs
 - Transverse- and longitudinal positions

 B_2L

• Gradients

SLS 2.0 Magnet Cross-talk: Consequences

- AN (off-axis, PM quad = anti-bend) <> CH + CV: asymmetric excitation of correctors
- Switch ordering of correctors (AN <> CV + CH), add magnetic shielding, shortening of sextupole by 10 mm
- OC magnet (octupole, norm. quad, skew quad) had internal cross talk. Skew quad and norm.
 quad magnetic centres dependent on octupole excitation...
- heat treatment to homogenize the magnetic material properties.
- 4 quad gradient issue in OC <> AN combination (~30 mm iron-to-iron separation). AN: 83.9 T/m → 79.7 T/m. OC: 5.6 T/m → 8.8 T/m
- increased separation (sextupole shortened by 10 mm) + OC yoke thickness ($30 \rightarrow 72.7$ mm)

Permanent Magnet Thick Septum

- Thick septum to be permanent magnet based
 - ➤ no <u>dynamic</u> leakage field
 - > compact
 - \succ shot-to-shot stability

Two permanent magnet blocks

- PM type: SmCo (Br = 0.95 T)
- Main field: 1.6 T
- Length: 350 mm
- Leakage field int.: 78 μTm (0.16 ppt) (Earth field 50 μ T, 350 mm = 17.5 μ Tm)
- Gap: 10 mm

DC electromagnet steerer

- Length: 150 mm
- Field: ±3% of main field \Rightarrow max: ± 0.23 T (± 5 A, 6.5 W)
- Gap: 10 mm

Leakage Field of Thin Septum Pre-prototype

- In-vacuum thin eddy current septum
 - 300 mm length 0
 - ~ 1 mm blade: .5 copper + .1 mumetal + .4 iron Ο
 - $330 \text{ mT} \Rightarrow 11 \text{ mrad}$ 0
- Goal: ≤ 2.37 uTm (17 ppm over ~400 mm) for $\leq 10\%$ emittance dilution
- Pre-prototype, in-air •
 - Direct- and leakage field well-suppressed Ο
- Tests made with **<u>half-sine</u>** pulse while real magnet will be <u>full-sine</u> \Rightarrow order of magnitude better suppression

Page 14

A Ch4 / 120mV

Fast Kicker Pulse Generation

- PSI 5 kV pulse generator prototype based on multi-stage Marx generator
 - successful and kept as a fallback solution
- FID 5 kV pulse generator based on drift step recovery diodes (DSRD)

FID GmbH 5 kV positive/negative pulse generator

Measurement setup with 20 m cables - for pulse generator protection

Measured output pulse FID

Full pulse length ~30 ns

Super-fast Kicker Pulse Generation

FID GmbH 10 kV positive/negative pulse generator

- Measurement setup with 20 m cables
- for pulse generator protection

Measured differential output pulse of a single stage (1 device) of the FID prototype and estimated deflection

Radio Frequency Systems for SLS 2.0

	Main RF-System	SLS 2.0	SLS
	Total voltage [kV]	1780	2080
New Teststand with	Voltage per cavity [kV]	445	520
lead-shielding	Wall loss per cavity [kW]	30	40
i cau-siliciumg	Required RF-power with b	eam 124	100
	and maximum ID Power [k	w]	
	Optimal coupling	3.4 4.3	2.5
500MHz HOM-dam	iped		Booster
cavities ordered fro	om		DOOSter
	Collimator		RF-Cavity
Circulator and load	Super-3HC	/alve-Box	
	Iransfer line		K
	to be adjusted)		
	Cryo pl	ant —	
4x150kW Cryoelectra DLLRF based on CompactPCI			
solid state amplifier ILK with Beckhoff/EtherCAT			

SLS 2.0 Brilliance

reduced emittance

- × 24 (10...20 keV)
- + Higher energy (2.7 GeV)
- imes 59 (10...20 keV)
- + CPMU16
- \times 140 (10 keV) ... 870 (20 keV)
- + HTSU10
- \times >1000 above 20 keV

Superconducting Staggered Array Undulator

Example of *field cooling* magnetisation

PAUL SCHERRER INSTITUT

High-temperature Superconducting Undulator HTSU10

Active length [m]	1.0
Total length [m]	< 2
Period length [mm]	10
Magnetic gap [mm]	4.0
Magnetic Field [T]	2.1
Sc Coil Field [T]	12
К	2
HTS temp [K]	10
LTS temp [K]	4.0

Tests at University of Cambridge

SLS 2.0 Insertion Devices

Top magnet module

Bottom Pole module

Hard X-ray

Compact, Modular, In-vacuum 3x U17 / CPMU16

hydraulic driven wedges \rightarrow 4 – 13.5 mm gap

Magnetic force compensation

Soft X-ray Modified SwissFEL APPLE X undulators UE36kn / UE90kn Knot¹⁾ magnet structures for on-axis heat load reduction, Bx 1.5x period length of By ¹⁾S. Sasaki, *et al.*, Proc. PAC'13, pp1043, published in JaCoW Conference Proceedings Webpage (accelconf.web.cern.ch/AccelConf/pac2013).

PAUL SCHERRER INSTITUT

Thank you for your attention And thanks to the many colleagues who provided slides and input for this presentation

Swiss Light Source

SLS 2.0 Information

SLS2.0 Storage Ring Technical Design Report

https://www.psi.ch/de/sls2-0

https://ados.web.psi.ch/SLS2/

Magnet cross-talk: extra slide

VE Reverse Bend (shifted PM quad)

Iterate!

Magnet Cross-talk: Procedure

- 3D field modeling (Opera)
- \Rightarrow 3D field table: Bx, By, Bz, 1-mm grid
 - \Rightarrow Polynomial coefficients along beam path⁽¹⁾-
 - \Rightarrow Kick-Drift Array (KDA): 1-mm slices, including \leq 12-poles⁽¹⁾

 \rightarrow Tracking with tracy-null⁽²⁾ using KDAs \Rightarrow DA and lifetime

$$\tilde{b}_{x}^{(i)} = \sum_{jpq} \Psi_{jpq} p x_{i}^{p-1} y_{i}^{q} T\left(\frac{s_{i} - j\Delta s}{\Delta s}\right)$$
$$\tilde{b}_{y}^{(i)} = \sum_{jpq} \Psi_{jpq} q x_{i}^{p} y_{i}^{q-1} T\left(\frac{s_{i} - j\Delta s}{\Delta s}\right)$$

B. Riemann, IPAC'21, <u>https://doi.org/10.18429/JACoW-IPAC2021-TUPAB238</u>
 Variant of tracy developed by B. Riemann for tracking with kick-drift array

Thin septum - extra slide

- Septum blade composition
 - \circ 0.5 mm copper
 - 0.1 mm mu-metal
 - 0.4 mm iron (part of iron block

Stored beam location, un-bumped

SLS Upgrade Power Consumption

25'000

SLS 2.0 - Timeline of Synchrotron Radiation at PSI

Plan for **B-Factory @ PSI** for particle physics and synchrotron radiation abandoned 1989

Swiss Light Source **SLS** First beam Dec. 2000 X-rays become cornerstone of PSI science program

Hauptbeschleunige

Vorbeschleuniger

2000

SwissFEL

First beam Dec. 2016 One of presently 5 X-ray-FEL facilities worldwide

SLS 2.0 First beam 2025

Cutting edge

- Accelerator design & technology
- Beamlines
- Data acquisition & processing

SLS Upgrade SLS 2.0 Goals

Project Goal

Continue to provide SLS users optimum conditions for their experiments

Methods

New MBA storage ring in existing building and new IDs

 \rightarrow Increased photon brilliance \rightarrow higher resolution, faster measurements

Increase of beam energy from 2.4 GeV to 2.7 GeV and s.c. superbends

- \rightarrow Increased X-ray flux
- → Access to shorter X-ray wavelength

Some new beamlines, many upgraded beamlines

 \rightarrow New scientific opportunities

New concepts for data acquisition, processing and storage → Capability for increased data rate and new sophisticated analysis algorithm

SLS Upgrade SLS 2.0 Science Cases

- Ptychography (cSAX)
- Tomography (TOMCAT, iTOMCAT, cSAX)]
- Macromolecular Crystallography (PXI, PX II, PX III)

Profiting from

- Higher Brightness & Flux
- ➤ Higher resolution
- Quicker measurements (22 h -> 8 s)

Example for Performance Increase: Ptychography at CSAX

5800 resolution elements/s	DEVELOPMENT	RESOLUTION (nm)	TIME	computing power (a.u.)
	State of the art	14.6	22 h	1
	SLS 2.0	6.2	41 min	32
	+ new undulator	4.6	13 min	100
	+ broadband	2.6	1.3 min	1000
M. Holler <i>et al.,</i> Nature 543 , 402 (2017)	+ efficient optics	1.5	8 s	10000

- Circumference 288 m
- Straights
 - \circ **3** × Long
 - \circ **3** × Medium
 - \circ **6** × Short
 - $\circ~$ Total Length $\sim 80~m$
- Beam Current 400 mA
- Beam Energy 2.41 GeV
- Emittance 5.5 nm

SLS Upgrade

SLS 2.0 Compared to Existing SLS

- Maintained
 - Circumference 288 m
 - \circ Straights
 - 3 × Long
 - **3** × Medium
 - 6 × Short
 - Total Length ~80 m
 - Beam Current 400 mA
- Almost Maintained
 - Source Point Positions |shifts| < 70 mm
- Improved
 - Emittance 157 pm (from 5500 pm)
 - Energy 2.7 GeV (from 2.41 GeV)

Permanent Magnets

Reverse Bend

Main Dipole

Combined Function

SLS Upgrade

Electromagnets

Quadrupole

Suber Bends

5 Tesla SC-Dipole

- approx. 18'200 kg of permanent magnet material
- approx. 1270 new power supplies and controllers

Main Dipole

Combined Function

Reverse Bend

Octupole + Quadrupole & Skew Quadrupole

SLS Upgrade Vacuum Chamber

- Chambers walls material: Cu OFE
- NEG Coating reduces Photon Stimulated Desorption Rate
 - 500 nm coating
- Ion Getter pumps at each Absorber
- No bellows within arc, No in-situ baking
 - Activation of 18 m long sector outside tunnel
 - Transport of 18 m lor

science IT

SLS Upgrade

Technical Advances and Innovations for SLS 2.0

SLS 2.0 requires technical innovations...

- vacuum system small diameter copper chambers and ultra-thin NEG-coatings
- magnets high gradient electro-magnets and permanent magnet technology
- on-axis injection thin septum and ultra-fast, high-field pulsers and kickers
- SC super-bends integrated vacuum chamber design with Nb-Ti conductor provides B ≈ 5 T

...and state-of-the-art technologies

- solid state RF amplifiers high efficiency, increased reliability and low noise performance
 digital electronics power supplies, BPMs & Feedbacks, LLRF, NPP, motor controllers...
 photon monitors reliable and feedback-ready photon beam (position) measurements
 pixel detectors for next generation imaging applications
 - extremely large data volumes and data reduction at the source

SLS Upgrade

Sector Layout - Short straights

Source point shift vs. SLS-1: $\Delta R = +67 \text{ mm}, \Delta S = -685 \text{ mm}$

= 3.40 / 2.40 m

Diagnostics - Devices and measurements

- Beam position
 - 120-130 (t.b.d.) BPM-stations
 - resolution < 50 nm rms in orbit mode</p>
 - orbit, tunes, optical functions, coupling etc.
- Beam size
 - Two beam lines, dispersive and non-dispersive
 - visible/near-UV π-polarization and interferometry
 - X-ray pinhole and Fresnel zone plate
 - emittances and energy spread
- Time structure
 - Streak camera, photo diode and multi-bunch feedback pickup
 - bunch length and filling patterns
- Beam current
 - Current transformers, beam loss monitors
 - current, lifetime, injection efficiency
- Booster-to-ring transfer line
 - \circ Screens and BPMs \rightarrow beam parameters
 - \circ Current transformer and loss monitors \rightarrow transmission