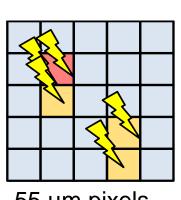
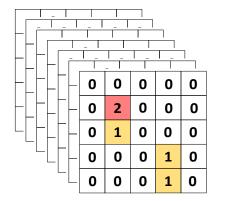

TimePix4, a versatile timestamping pixel detector

Jonathan Correa, David Pennicard, Sabine Lange, Sergej Smoljanin, Sergei Fridman, Vahagn Vardanyan, and Heinz Graafsma


DESY Photon Science Detector Group (FS-DS)

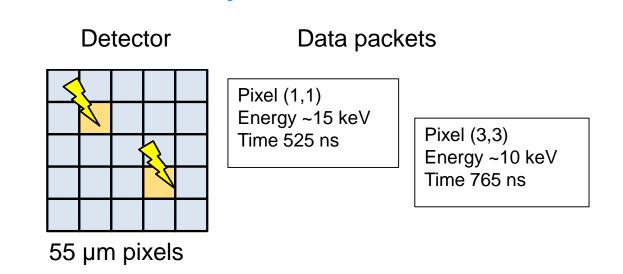
IFDEPS virtual Thursdays, 08.04.2021


Developed by CERN on behalf of Medipix4 collaboration


Photon counting mode

Detector

Ē

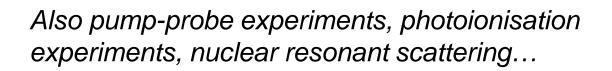


55 µm pixels

Improves on Medipix3 (single threshold):

- 40 kHz frame rate CRW (8 bit depth) ۲
- $\sim 5 \times 10^6$ counts/pixel/s ullet

Event-by-event mode


Improves on Timepix3:

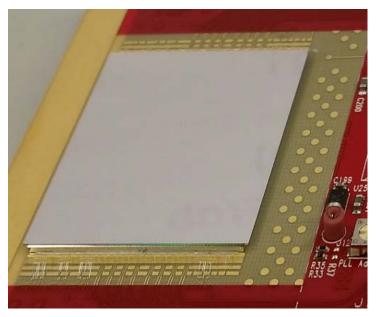
- Event rate: ~10⁹ events/s in 512 x 450 pixel chip ۲
- Up to 150 ps RMS time resolution (sensor dependent)
- ~ 2 keV energy resolution

Example application – coherence beamlines at DLSRs

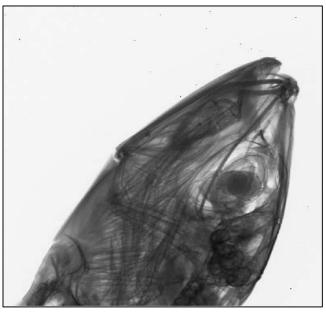
- > Can flexibly switch between photon counting and event modes
- > Photon counting mode for scanning techniques
 - Scanning nano-SAXS, holography...
- > Event mode for extreme time resolution
 - Can identify which bunch each photon comes from
 - XPCS and other correlation techniques
 - Sub-microsecond correlation times

I. Zaluzhnyy et al, Materials 12(21), 3464, 2019. doi: <u>10.3390/ma12213464</u>

2D detector



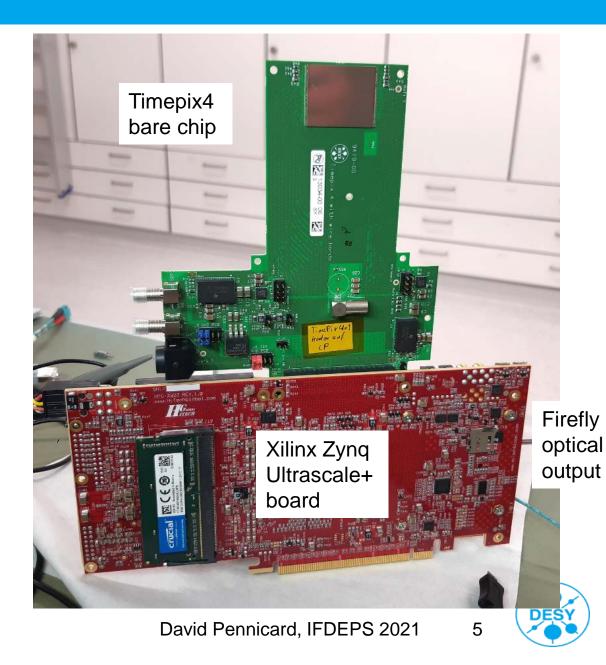
Sample


X-ray beam

Status of chip

- > Chip tested by CERN most specifications reached
- > Bug prevents full-speed readout under normal operating conditions
 - Bug fix found and tested with MPW
- > Revised chip available later this year

Timepix4 with Si sensor



X-ray image of fish (thanks to Xavi Llopart)

Readout development at DESY

- > Currently developing single-chip readout with Xilinx evaluation board
 - Communication with chip working
 - Challenge: Up to 160 Gbit/s bandwidth!
- Long-term plan multi-megapixel systems using Through Silicon Vias
 - Various improvements of TSV design implemented, e.g. better landing pads and redundant inputs

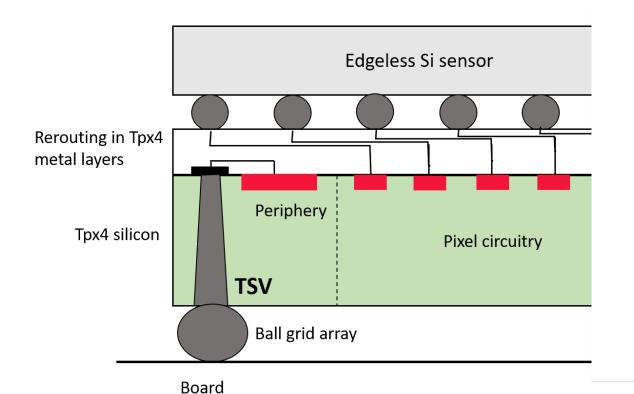
> ADDITIONAL INFORMATION

6

Timepix series specifications

			Timepix3 (2013)	Timepix4 (2019/20)	1
Technology			IBM 130 nm – 8 metal	TSMC 65 nm – 10 metal	
Pixel size			55 x 55 µm	55 x 55 µm	
Pixel arrangement			3-side buttable 256 x 256	4-side buttable (TSV) 512 x 448	3.5 x
Sensitive area			1.98 cm ²	6.94 cm ²	
Readout modes	Data driven (tracking)	Mode	ToT and TOA		
		Event packet	48-bit	64-bit	
		Max rate	< 43 Mhits/cm ² /s	357.6 Mhits/cm ² /s	8 x
		Pix rate equiv.	1.3 kHz/pix average	10.8 kHz/pix average	
	Frame Based (imaging)	Mode	Count: 10 bit + iToT	Count: 8 or 16 bit CRW	
		Frame	Zero suppressed (with pix addr)	Full frame (no pix addr)	
		Max count rate	82 Ghits/cm ² /s	~ 800 Ghits/cm ² /s	10 x
		Max frame rate	N/A (worst case: 0.8ms readout)	80 kHz CRW	
TOT energy resolution			< 2 keV	< 1 keV) 2 x
Time resolution			1.56 ns	~ 200 ps) 8 x
Readout bandwidth			≤ 5.12 Gbps (8 x 640 Mbps)	≤163.8 Gbps (16 x 10.2 Gbps)	32 x
Target minimum threshold			< 500 e ⁻	< 500 e ⁻	

Notes:


Event rate and frame rate shown here assume readout at maximum speed, but on slide 2 I assume half readout rate for a conservative estimate.

Frame mode count rates give the theoretical maximum. With random photon hits, 10% nonlinearity will occur at 10% of this rate. On slide 2 I assume we can measure ¹/₂ the theoretical maximum after count rate correction.

Improved 4-side butting with Through-Silicon Vias

- > With TSVs, full chip surface is covered with pixels
 - Rerouting in metal layers creates space for periphery
- > Improved TSV landing pads, redundant inputs, extra power TSV connections in centre of chip

Timepix4 448 x 512 pixels of 55 µm

Wire bond pads can be diced off

MINER MULTIN I COMMENDE LITTE TITLE CANNER AND ADDRESS AND ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDR

8

Expected applications around DESY

Nanolab – Time-resolved X-ray diffraction with tube source

Stalling B

Particle physics / Uni Hamburg – Sensor R&D

Particle physics test beam facility – Beam telescope

opean

PETRA – high-speed X-ray experiments

CFEL CMI group – ion detection in lab and at FLASH