Thursday, April 8th, 2021 IFDEPS Virtual Thursdays 2021, Session 8, New detector projects indirect detection

Development of a 200-nm-resolution X-ray imaging detector with a field of view of 2 mm square

Takashi KAMESHIMA and Takaki HATSUI

SACLA

Introduction

Lens-coupled imaging detector

(a) Scintillator

- Thickness matched to depth of field

(b) Optics

- High NA for resolution enhancement

(c) Image sensor

- Optimum sampling of airy disk

H. Graafsma and T. Martin, in Advanced tomographic methods in materials research and engineering 277 (2008)

- Residual pores and voids
- Unmatched interface
- Distortion
- Rough surfaces
- X-ray damage of an adhesive layer
- X-ray damage of imaging optics

Development of indirect detector at SACLA

Transparent ceramic film scintillator

5-µm-thick LuAG:Ce

SEM image of bonding area

- No pores and voids
- Quasi-homogeneous refractive index
- Low distortion
- High radiation hardness
- Strong radiation shielding
 (10⁻⁴⁰ at 10 keV, 10⁻¹¹ at 20 keV, 10⁻⁴ at 30 keV)

Demonstration of resolving power

X-ray transmission image of test chart

200 nm process VLSI circuit drawing

See the detail in the appendix slide (page 6)

X-ray transmission image of VLSI

Near diffraction-limited performance

So far about 10 detector systems are deployed at SPring-8/SACLA mainly for the beam monitors

Deployed imaging units

3/6

Enhancement of field of view

Large format image sensor

SONY IMX411 sensor

14,192 x 10,640, 3.76 µm pixels 53.3 x 40 mm² chip Back illumination 16 bit depth

diagonal 67 mm

Sampling optimization

Airy disk radius = 2~3 effective pixels (spatial resolution)

NA optimization

D. Q. E =
$$\eta_{xqe} \left(1 + \frac{1}{\eta_{ly} \cdot \eta_{ce} \cdot \eta_{vqe}} \right)^{-1}$$

X-ray shot noise Photon shot noise

 η_{xqe} : X-ray Q.E. η_{ly} : Light yield η_{ce} : Light throughput η_{vqe} : Visible photon Q.E.

Upgraded detectors		Developed lens	Commercial off-the-shelf lenses					
		Lens A1	Lens A2	Lens A3	Lens A4	Lens A5		
Resolution (L&S)	[µm]	~0.2	0.45	0.6	1.0	1.9		
Field of view	[mm ²]	2.6 x 1.9	7.6 x 5.7	10.3 x 7.7	15.2 x 11.4	53.3x 40.0		
Conversion	[e-/X-ray]	10.6 @ 10 keV	1.98 @ 10 keV	1.21 @ 10 keV	0.78 @ 20 keV	0.33 @ 30 keV		
DQE	[%]	15 @ 10 keV	42 @ 10 keV	44 @ 10 keV	31 @ 20 keV	21 @ 30 keV		

Summary

- Transparent-thin-film scintillator was successfully produced.
- Near-diffraction-limited resolution is achieved.
- Imaging systems are deployed to SACLA & SPring-8.
- An indirect detector resolving 200 nm line & space with a FOV of 2 mm square is planned to be developed for high resolution X-ray CT.

Thank you for your attention

Deployed imaging units at SACLA & SPring-8

High resolution

Off-axis unit

High energy, narrow space

- 5 μm-thick LuAG:Ce scintillator layer (min.)
- ϕ 21.4 image circle
- Radiation shielding for objective lens protection
 (attenuation of 10⁻⁴⁰ at 10 keV, 10⁻¹¹ at 20 keV, 10⁻⁴ at 30 keV)
- Scintillator replaceable
- Objective lens replaceable
- Camera optionality (c-mount)
- Sample-scintillator proximity design (min. 0.3 mm w.d.)

Optical configuration		100x	50x	20xHR	20 x	10x	5x	2x	1 x		
Resolution(L&S)	[µm]	~ 0.2	~ 0.25	~ 0.25	~ 0.35	~ 0.65	~ 1.1	~ 2.6	~ 4.0		
Field of view	[mm ²]	0.13 x 0.13	0.27 x 0.27	0.67 x 0.67	0.67 x 0.67	1.3 x 1.3	2.7 x 2.7	6.7 x 6.7	13 x 13		
Conversion	[e-/10 keV]	~ 12	~ 8	~ 8	~ 3.2	~1.4	~ 0.35	~ 0.06	~ 0.02		
Configuration to resolve 200 nm L&S patterns		Objective line-up for Standard unit									
		Objective line-up for Off-axis unit									

These imaging units and scintillators are commercially available from SIGMAKOKI CO., LTD. 6/6