Calibration of a pnCCD Detector at European XFEL

Kiana Setoddstrhiaith Soft X-rays up to 3 keV

Property	Value		
Photon Energy Range	0.3 – 25 keV		
Pixel Size	75 μm × 75 μm		
Sensor Size	1024 × 1024 pixels		
Dynamic Range	< 3000 photons at 1 keV		
Beam Hole Size	2 mm		
Speed	Up to 150 Hz		
Quantum Efficiency	> 80% for 0.7 < E_{γ} < 12 keV		
Thickness	450 μm		
Noise	3e⁻ at High gain		
Noise	3e ⁻ at High gain		

European XFEL

Sensitive Area = $7.7 \times 7.7 \text{ cm}^2$

Developed by PNSensor GmbH (Munich)

Flat-Field Illumination and Calibration of pnCCD at -30 °C - August 2020

- Using AI fluorescence with an aluminum target
- Using FEL beam at 1.6 keV
- 4 gains are calibrated for bias voltage of -400 V.
- 1 gain is calibrated for bias voltage of -470 V.

Parameter	Value		
Sensor Temperature	-30°C: very stable		
Frame Rate	10 Hz		
Bias Voltage	-400 V		
Gain	1/1, 1/4 , 1/16, 1/64 (one at the time)		
Bias Voltage	-470 V		
Gain	1/64		

Relative Gain Calibration

 One can obtain per column (readout axis) spectrum of single events and fit Gaussian functions to the peaks per column.

Spectra of Single Events for the Lower Left Quadrant

^{pixel} Number

Outlook

- Detector was installed and commissioned in summer – 2020 Also see M. Kuster et al., J. Synchrotron Rad. 28 (2021) 576.
- It was used in a following user run (09/2020)
- Experiment was very successful
- More calibration data will be obtained in 2021
- Spectroscopic capabilities are being investigated now using Xe data at 3 photon energies (1.2, 1.5, and 1.9 keV)
- More experiments are planned for 2nd half of 2021

Some stray light remained – improvements to eliminate stray light is ongoing

European XFEL

Calibration of a pnCCD Detector at European XFEL

Kiana Setoodehnia – April 8th, 2021

Backup Slides

European XFEL

pnCCD Readout and Operation Modes

- Has 4 quadrants
- Charge is transferred per column <u>along lines</u>
- Readouts are on the left and right
- Every 128 columns share readout electronics: CAMEX
- pnCCD has 3 modes of operation (3 bias voltages)
- Each mode has 7 gains

Dark Characterization

- Dark pedestal is the highest for Normal mode of operation (highest power output @ -400 V)
- Pedestal decreases with decreasing gain
- At very low gains, pedestal remains constant

European XFEL

- Dark pedestal is rather stable
- Noise is dominated by the CCD noise in gains 1/1 and 1/4 (high gains): gain = 1/1: 55 ADU, gain = 1/4: 27 ADU
- Noise is dominated by electronics noise in gains <= 1/16 (remains constant around ~8 9 ADU)

Kiana Setoodehnia – April 8th, 2021

Common Mode Characterization

Distribution changes from image to image and run to run

Maximum Charge

Medium Charge

Minimum Charge

No Charge

02

Illuminated Frame Characterization

- Bad pixels are masked (in the analysis)
- Offset is corrected for
- Common mode is calculated and corrected for
- Charge sharing (due to small pixel size) is evaluated
 - Events are classified into different patterns
 - Single events with no charge sharing are identified
- Single events are used for charge transfer inefficiency and gain characterization

S: Singles, D: Doubles, T: Triples, Q: Quadruples

Diagram is for another CCD with different pixel size!

Charge Transfer Inefficiency

CTI: Fractional loss of charge during charge transfer due to existence of traps in the pixel structure

• To evaluate CTI, single events are plotted vs. columns, for each row. Plots are then fitted using a linear function:

European XFEL

CTI Correction

- From the CTI fits, one value of CTI is obtained per each row
- CTE map is then computed as follows: CTE Map = (1 CTI)^{columns}
- The created CTE map is then used for correction of the CTI effects by multiplication of data and the CTE map on a per pixel basis
- CTI is rather insignificant and when corrected, it does not really have any noticeable effect on the images
 - We <u>ignore this correction</u> for pnCCD

Gain Characterization and Gain Correction

Relative gain: the relative difference in the amplification of charge due to different output amplifiers. It is calculated as:

 $\label{eq:relative gain} \textit{relative gain} = \frac{b(i)}{\frac{1}{N}\sum\limits_{i=0}^{N}b(i)} \ , \ \ \text{b} = \text{intercept of linear fits; N = total \# of columns per quadrant}$

Once we obtain the relative gain map, we can correct for it:

- Mask bad pixels and cosmic ray events in the analysis
- Correct for offset
- Calculate common mode and correct for it
- Divide the data by the gain map
- Divide data into 4 quadrants and correct for split events (pattern classification)
- Arrive at final corrected spectrum of singles events
- Fit the above spectrum with Gaussian peaks
- Now we have energy (eV) vs. ADU: Fit these data to obtain absolute gain information

Kiana Setoodehnia – April 8th, 2021

Uncertainty is less than ±2%

Valid Events Spectra After All Corrections

Aluminum Fluorescence

Fitting Gaussian Peaks to Spectra

- I only fit the k_{α} peak of Al
- 512 columns per quadrant
- 4 quadrants
- Fits take about ~20 minutes

Row-wise Relative Gain Calibration

• By fitting Gaussian functions to each column spectrum of single events, one can derive a relative gain map

5600

5500

5400

5300

5200

0

Peak Position (ADU)

Relative Gain Calibration Validation

 After gain correction, one can look at row-wise corrected spectra of single events, and the peaks must all be on the same position corresponding to a photon energy.

24

Column Number

200

5750

5500

1000

₹ 525

— Mean

— Median

--- Min --- Max

Position of kal Line of Al for pnCCD (Gain = 1.0)

Relative Gain Calibration: Comparison of Methods

(counts)

Sequer

One

Corrected Events for

Singles Spectrum of the Lower Right Quadrant Best Fit --- Baseline Fit 🕴 k alpha Peak 500000 Such results are also Absolute Gain Aluminum obtained for 5 gains out of 400000 Fluorescence 21. Aluminum 300000 2-photons peak Linear Regression Fit to Obtain Absolute Gain for Gain = 1/1 Fluorescence 3γ Line of Al / Gain = 1/1200000 4000 106 Events Involving Single Pixels Only Events Splitting on Double Pixels Events Splitting on Triple Pixels Gain = 1/1100000 Events Splitting on Quadruple Pixels 3000 105 2γ Line of Al All Valid Events 2000 10^{4} Gain = 1/13500 6000 6500 4000 4500 5000 5500 Energy (ADU) k_{α} Line of Al Singles Spectrum of the Lower Right Quadrant 1000 10³ Best Fit --- Baseline Fit Gain = 1/64700000 Singles Corrected Aluminum 17500 600000 2500 5000 7500 10000 12500 15000 ADU Fluorescence 500000 Parameter Value 10¹ 400000 χ²/d.o.f 10° 1.2 300000 5000 10000 15000 20000 25000 30000 35000 Energy (ADU) [1000 bins per 35000 ADU.] Gain 1/1 0.25659(53) 200000 eV/ADU 100000 At lower gains, the peaks get skewed, but I still get good fits. Energy $\sigma = 71.1(2) \text{ eV}$ 40 120 60 80 100 Energy (ADU) Resolution

Available Calibrations

Bias Voltage (V)	Temperature (°C)	Gain	Absolute Gain (eV/ADU)	σ (eV)	Conversion Factor (e ⁻ /ADU)
- 400	-30	1/1	0.25659(53)	71.1(2)	0.07
- 400	-30	1/4	1.06109(426)	74.2(5)	0.29
- 400	-30	1/16	3.38260(169)	101.0(4)	1.08
- 400	-30	1/64	15.33222(7731)	257.3(29)	4.26
- 470	-30	1/64	15.19430(3813)	247.1(27)	4.22

• I have set the notebooks such that, if desired, the gain of each individual quadrant can also be obtained for any of the above settings.