Switch Performance Measurement of Junction Field Effect Transistor Integrated in Pixel Sensor

H. Park ${ }^{1}$, J.M. Baek ${ }^{1}$, H.B. Jeon ${ }^{1}$, K.H. Kang ${ }^{1}$, J.Y. Kim ${ }^{1}$, H.Y. Lee ${ }^{2}$, M.W. Lee ${ }^{3}$, S.C. Lee ${ }^{1}$
${ }^{1}$ Kyungpook National University, Daegu, Korea
${ }^{2}$ Center for Underground Physics, Institute for Basic Science, Daejeon, Korea
${ }^{3}$ Dongnam Institute of Radiological and Medical Sciences, Pusan, Korea

Design concept of pixelated silicon PIN sensors with JFET structure

- PIN structure: for the detection efficiency for low energy X-ray

Pixel size: 200, 100, 30 um

- Cylindrical JFET structure
- switch off : by applying a reverse bias voltage to the gate
- switch on : charges are transferred from the source to the drain
- all pixels within one row are read in parallel and the next row is then selected by the control voltage after the previous row's is finished

Fabrication

- Design parameters for fabrication
- P-well doping: $7.0,7.5,8.0 \times 10^{13} \mathrm{~cm}^{-2}$
- A space: 0.5, 1.0, $1.4 \mu \mathrm{~m}$
- B space: 1.4, 1.8, $2.2 \mu \mathrm{~m}$
- C and D spaces: $0,5,10 \mu \mathrm{~m}$

- 1 stepper photomask (6 layer patterns) and 5 aligner photomask
- One of the fabricated wafers on 6 -in. wafers with 25 different designs
- Electronics and Telecommunications Research Institute (ETRI) in Korea

Switch Performance Test

For electrical characteristic measurements

I-V characteristics of a JFET for various gate voltages

Pixel size: 100×100 um 2

C space 0/5/10um

D space 0/5/10 um

As expected, the larger the drain voltage at a given gate voltage, the larger the drain current, and the larger the gate voltage, the smaller the drain current.

Summary

- Pixelated silicon sensors with a cylindrical JFET structure were fabricated
- We determined design parameters showing good switching function - switching efficiency is improved with a decrease in the JFET size, and with increases in the A and B space values.
- switch-off resistance of the JFET was found to reach about $10^{10} \Omega$
- Although this value appears to be relatively low, the switching functioned well for a gate voltage between -1 and -2 V .

