

Facility Report Synchrotron SOLEIL

F. Orsini, for the Detectors Group

IFDEPS 21 25 March 2021

Current context → SOLEIL Upgrade

25th March 2021

Facility Report – Synchrotron SOLEIL - F. Orsini - IFDEPS 21

Fast gated hard X-ray imager

Hybrid pixels based on the UFXC ASIC (ASIC designed by AGH-FEE - Krakow)

First application: Time resolved studies **Detector specifications** Pump and probe-probe experiment Shutterless single bunch separation => gate min. counting time ≈100 ns unpumped pumped **Energy selection** 500 ps to 1 ns 147 ns Δt_2 => two thresholds 500 us Δt₁ RX (probe) 5 kHz laser repetition rate (pump) Laser (pump) => 20 kfps (1 trig laser = 4 images) Min. working energy 7 keV \Rightarrow min. threshold \approx 3.5 keV Beamline integration => Tango controlled **IFDEPS 2018** 10 kfps 1 chip Adaptation Lot of progress made since 2018 2.5 Gb/s (SFPs) Slow Control via ethernet Backup solution Server 20 kfps 2 ck Data processing, Storage and Control (Tango) Synchronization $2 \times 2 \text{ cm}^2$ board 1 FMC Trigger 2 Triggers 3 SFPs Hardware adapted FPGA embedded [A. Dawiec et al, AIP Conf Proc 2054 (2019)] TANGO readv

Facility Report – Synchrotron SOLEIL - F. Orsini - IFDEPS 21

Fast gated hard X-ray imager

First pump-probe-probe tests on CRISTAL beamline in April 2019

[D. Bachiller et al, JSR (2020), 27]

Key advantages of the detector

Possibility to correct drifts of experimental conditions, and/or to follow unexpected evolution of sample (not possible with current detector)

0.2 0.4 0.6 0.8 1.0

Pump-probe delay, Δt [ns]

-0.2 0.0

• Less X-ray attenuation needed (factor 10), better statistics (at least 4 times more than current detector)

-0.4

• (Better spatial resolution)

SYNCHROTRON

2_chip detector prototype tested with the **'First User'** experiment in November 2020

8_chip demonstrator design started (hybrids and DET_board produced, DAQ (FW) under development)

Same chip integrated by RIGAKU (with seamless pixels array) tested at SOLEIL end of 2019 \longrightarrow [Y. Nakaye et al, JSR (2021), 28]

• [A. Dawiec – Session 3 – 01 April 2021]

Fast Soft/Tender X-rays imager

Back Side Illuminated Monolithic Active Pixel Sensor

- **Recent situation:** lack of very performing 2D detectors in Soft X-rays domain
- Two approaches: a home-made adapted camera based on a performing commercial sCMOS sensor and a fast CMOS monolithic imager developed within a large collaboration of light sources

GSENSE(400BSI) sCMOS sensor

- E_{range} = ~ 100 eV up to 2 keV
- 4 MPix(~ 2.2 × 2.2 cm² sensitive area)
- Readout speed 24 Hz (HDR) up to 48 Hz (LG or HG)

Ptychography reconst. of magnetosome (E=700 eV)

- 1 adapted camera in production in 1 beamline (end of 2020), another beamline will be equipped in 2021
- Concept transferred to AXIS Photonics company

[K. Desjardins et al, JSR (2020), 27]

PERCIVAL: P2M sensor

- E_{range} = ~ 100 eV up to 2 keV
- 2 MPix (~ 4 × 4 cm² sensitive area)
- Auto-adaptive gain
- Readout speed 82 Hz (design limit: 300 Hz)

- SOLEIL participated in the data analysis framework
- BSI sensor is operational and under tests at DESY [A. Marras et al, JSR (2021), 28]

[C. Wunderer – Session 7 – 08 April 2021]

High counting rate fluorescence detector

Multi-Element Germanium detector

Current situation: slow evolution of very performing germanium detectors in the past 10 years

SOLEIL joint DIAMOND's R&D effort on multi-element Ge spectroscopy grade detector systems for XAS applications
Detector response

Requirements for the detector + electronics

Energy range: 5-100 keV

NCHROTRON

- Highest counting rate with moderate dead time
- Energy resolution ex: < 200 eV @ 5.9 keV @2Mcps</p>
- Peak to Background ratio > 500
- No degradation of performances in time
- Robustness and reliability of all channels

First prototype with 19 pixels is under realization

- Simulations: pixels configuration comparison is in progress
- New Ge sensor realized (will be delivered soon at DIAMOND)
- New carrier board under tests

[N. Tartoni – Facility Report – 25 March 2021]

'High throughput X-ray Spectroscopy Detector System' = EU Project LEAPS-INNOV (WP2)

Ultra Fast Energy Resolved Imager

Photon Counting Detector – Hybrid pixels

Health Advanced Materials Pink beam

□ Objective: perform 'Pseudo' Laue diffraction with multi pink beam

- A factor of over 1000 in acquisition speed maybe expected, compared to current performances
- Capability of simultaneous measurements of continuous photon fluxes at different energies

Example of diffraction spots received by the detector (CRISTAL, metallo-organic sample)

Few challenges for the ASIC: r/o speed, charge sharing, E_{resol} Specifications in discussion with AGH-FEE for feasibility Prototyping phase should start this year

Other detectors activities

XBPM (CVD Diamond XBPM, etc)

X-ray camera systems (design, assembly, tests)

Digital Electronic characterization (FALCONX, XSPRESS3(4), DANTE)

Commercial detectors acceptance tests Ex: PILATUS 2M CdTe

25th March 2021

Facility Report – Synchrotron SOLEIL - F. Orsini - IFDEPS 21

Thank you for your attention

Detectors Group

A. Dawiec, K. Desjardins, B. Kanoute, FJ. Iguaz, C. Menneglier, F. Orsini (Non permanent) C. Bacchi, EH. Ait Mansour, E. Sacchetti, T. Saleem