

Facility report SPring-8

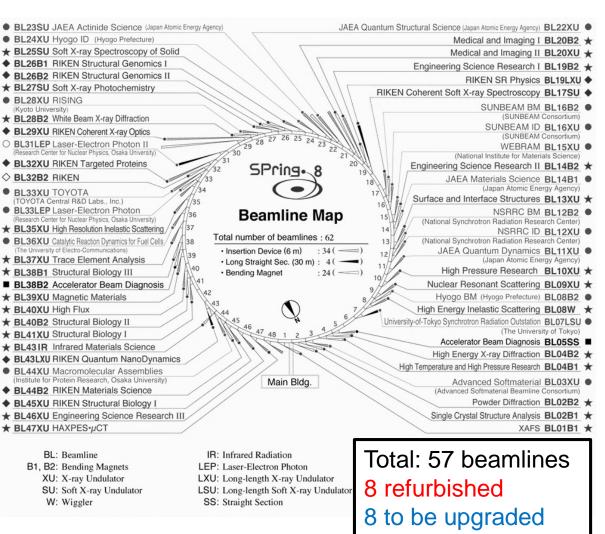
Yasuhiko IMAI (JASRI / RIKEN)

57 beamlines in operation5: vacant

- 1. SPring-8-II
- 2. Demands for detectors
- 3. Upgrade of BLs
- 4. Examples of the upgrades
- 5. Summary

- Key features of the upgrade:
 - lower-energy ($8 \text{ GeV} \rightarrow 6 \text{ GeV}$)
 - lower-emittance (2.4 nm·rad → ~90 pm·rad) (under investigation, can be changed)
 - higher-brilliance and higher-spatial coherence
- Schedule is delayed (first beam in 2026?)

budget is not secured yet


Upgrade of BLs

Upgrade of BLs are going. Trying to follow ESRF model

Started from 2018

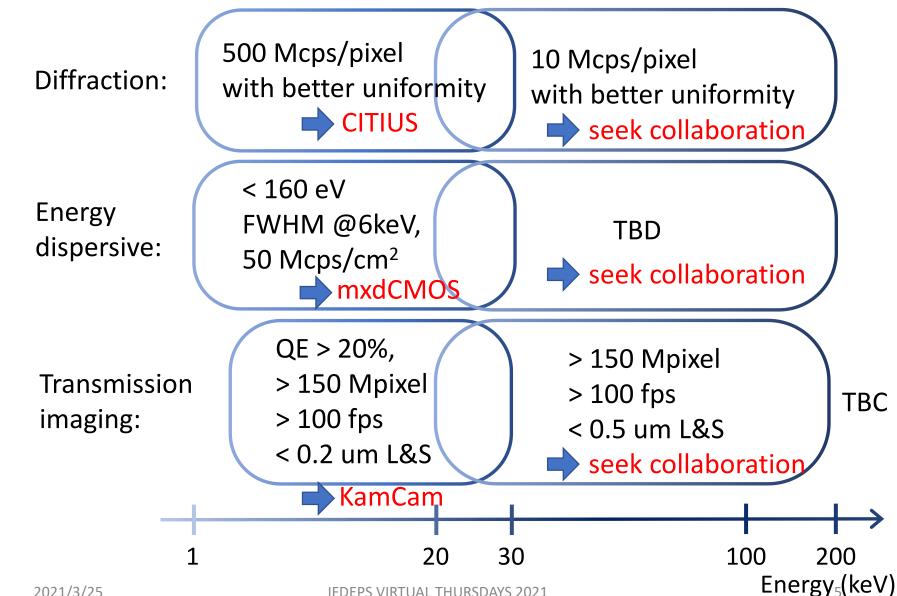
Refurbished 2018~2020: BL05XU (R&D) BL32B2 (R&D) BL38B1 (PX \rightarrow SAXS) BL36XU (\rightarrow XAFS) BL45XU (SAXS \rightarrow PX) BL09XU (NRS \rightarrow HAXPES) BL35XU (IXS \rightarrow IXS/NRS) BL20B2 (Imaging)

Planning 2021~2022: BL13XU (XRD for MS) BL02B1, 02B2, 04B2, 19B2 BL28B2 (Imaging) BL46XU (HAXPES) BL40XU (SAXS)

SPring.

Examples of the upgrades

Red: procurement & installation in FY2020 and FY2021


- Powder diffraction and total scattering for PDF analysis, BL13XU A new diffractometer with X-Spectrum Lambda CdTe 750K (6 set) and Varex Imaging CMOS flat panel
- Imaging, BL20B2 (200 m-long BL) Multi-layer mirrors: 3x10¹⁰, 1,5x10⁹ photons/s/mm² (@ 110 keV, 43 or 200 m from the light source, designed values) 200-nm-resolution imaging detector with a field of view of 2x2 mm² (KamCam)
- High-energy X-ray diffraction R&D BL, BL05XU
 Multi-layer mirrors: 10¹³ photons/s/mm² (@ 100 keV)
 DECTRIS PILATUS3 X CdTe 300K and X-Spectrum Lambda CdTe 750K
- PX-BL

DECTRIS EIGER2 X CdTe 4M in BL41XU

• CITIUS demonstration station, BL29XU CITIUS 280K, 840K, and 2.2M flash talk on April 8th (Session 8)

SPring 8 Demands for detectors @ SP8-II

IFDEPS VIRTUAL THURSDAYS 2021

Summary

- To fully exploit SPring-8-II potential, wide range of detectors are indispensable. Especially;
 - X-ray Imaging detectors for diffraction measurements
 - Better specifications: Pile-up free for operational cost reduction
 - < 30 keV CITIUS (facility report from SACLA)
 - > 30 keV seek collaboration for photon counting as a baseline
 - DESY through X-Spectrum
 - PSI through DECTRIS
 - We are interested in novel technologies such as high throughput CdTe, Ge, etc.
 - X-ray Imaging detectors for transmitted x-rays
 - KamCam (flash talk from T. Kameshima on April 8th in Session 8.)
 - X-ray energy dispersive detectors toward >100 M photons/s/system
 - < 30 keV Multi-element monolithic CMOS detector (silicon as sensor material, under development)
 - HEXITEC of RAL (Collaborations among RAL, Gunma Univ. and SPring-8)

Current status

More than 20 DECTRIS 2D detectors (Si sensor) 5 DECTIS 2D CdTe detectors 4 X-Spectrum Lambda CdTe 750K now and another 4 in FY2021 1 RIGAKU 2D CdTe detector

Future plan under discussion

• energy dispersive detectors