

Bernd Schmitt :: Photon Science Detector Group :: Paul Scherrer Institut

Detector Development for Photon Science at PSI Facility Report

- Electron energy: 2.7 GeV (previously 2.41 GeV)
- Maximum photon energy: 80 keV (previously 45 keV)
- Increase of coherent flux at cSAXS: ~40

2

Tentative SLS2.0 schedule

	2023	2024				2025										20				6					
	Q1 Q2 Q3	Q4	Q1	Q2	Q	3	Q	4	Q	1	С	2		Q3		С	4	Q		Q2		Q	3		Q4
Overall	J F M A M J J A S SLS user operation	SONDJFMAMJJJASOND Dark period				JFMAMJJJ			A S O N D SLS2 user operation with reduced number of		J F shutd	M own	A M com- mis-	J J A SLS2 Use			S O								
Machine	Ш	Dismantling SLS		Installati	ion new ri	ng			Beam commissioning and vacuum conditioning					beamlines			ScSB & BI- Gr2 ld installation		SB com- mis- sioning	user oper- ation		user operatio			
Beamlines group 1	II		installations	, modification as 2nd prior	s and upg ity	grades		inst., modif. and upgr. 1st priority				- user operation			mod catic	ifi- ns	com- mis- sioning	eratior							
Beamlines group 2	11		installations	, modification as 3rd priori	s and upg ty	grades	inst., modif. and upgr. 2nd priority			installations, modif as 1s			difications and upgrades 1st priority			front compl	end etion	commis	issioning						

Group 1: PX1,2,3, SX-ARPES, MS, I-TOMCAT, SIM, cSAXS, RIXS Group 2: 3 x SCSB BLs, PolLuX, XIL, VUV, microXAS, QUEST, Phoenix/Xtreme

SwissFEL: low energy branch Athos and Cristallina endstation at Aramis

Athos:

- First light, beamlines in commissioning
- 2 end stations: Maloja and Furka
- Detectors based on Jungfrau, commercial detector for RIXS

Aramis:

- Third endstation Cristallina for SFX
- 9M Jungfrau

Installation of Mythen3: \rightarrow see talk from Anna Bergamaschi Zhang and Marco Ramilli

Installation of Jungfrau detectors at PSI (hard x-rays):

- 9M and 1.5M Jungfrau for Cristallina endstation at SwissFEL (in 22)
- 4M (this year) and 10M Jungfrau Detector for MX at SLS (in 22) \rightarrow High data rate: 2.2kHz 20Mbyte/image: 44Gbyte/s → Work on specific data backend using IBM Power9 and in FPGA data conversion

Gotthard2 development (with EU-XFEL) all modules to EUXFEL this year: \rightarrow see talk Jiaguo

Low x-ray energies (250eV-2keV):

- Collaboration with FBK for the development of sensors with a thin entrance window lacksquareand LGADs
 - \rightarrow will soon get a batch with variations to optimize entrance window
 - \rightarrow will get a first iLGAD batch with thin entrance window in September
- Detectors at Athos based on Jungfrau with thin entrance window sensors from FBK: lacksquareMaloja: first 4M Jungfrau detector will be installed after eastern second 4M later this year Furka: 1M for diffraction in UHV RIXS chamber this year, commercial detector for RIXS \rightarrow see talk from Aldo Mozzanica

will probably be replaced with new FE modules with new sensors with higher QE in 22

Full size Mönch: currently 400x400 channels (1x1 cm²) \rightarrow 2 x 3cm² with 4x3cm² modules

New single photon counting detector for SLS2:

• Goal: increased count rate capability: 20MHz/channel at >80% efficiency compatible with electron and hole collection (std Silicon sensors, LGADs and high-Z) will most likely use 100G readout board, frame rate still undefined a few to 10KHz For use at SLS2 and at cSAXS potentially very larger detector (>49M)

Higher frame rates:

- Currently limited by 2x10Gbit links on Jungfrau and Eiger readout boards \rightarrow started to work on new 100Gbit readout board \rightarrow will be used for Jungfrau2 and new single photon
 - counting detector
 - \rightarrow Jungfrau2 at ~6-10kHz

Single Photon Counting Detectors (since 1999)

	MYTHEN	PILATUS	EIGER				
	<image/>		Image: Sector of the sector				
Status	at beamline	at beamline	9M at beamline				
Pixel size	50 µm x 8mm (Strips)	172 x 172 μm²	75 x 75 μm²				
Maximum system size	120º (=48 modules)	6M (=42 x 43 cm²)	9M (=23 x 23 cm²)				
Minimum threshold	< 5 keV	< 2 keV	< 2.5 keV				
Count rate capability	0.6 MHz/Strip (10% deviation, Standard)	0.5-1.0 MHz/Pixel (10% deviation)	0.2-0.7 MHz/Pixel (10% deviation)				
Maximum frame rate	1 kHz/Module	300 Hz/Module	23 kHz (4-bit)				
Applications (Examples)	 Powder Diffraction Energy dispersive Spectrometer Beam Position Monitors 	 Protein Crystallography Time-resolved experiments Small and wide-angle X-Ray Scattering (SAXS/WAXS) 	 Protein Crystallography XPCS Coherent X-Ray Imaging Photoelectron detection 				

PAUL SCHERRER INSTITUT

Charge integrating detectors (since 2008)

	GOTTHARD ¹	AGIPD ²	JUNGFRAU	MÖNCH
				res bei halsofi bei Broi
Status	Modules available	At beamline (EUXFEL)	2x 16M at SwissFEL	(Advanced) Prototyping
Pixel size	50 µm (Strips)	200 x 200 µm²	75 x 75 μm²	25 x 25 µm²
Maximum system size	Modules (=10 ASICs)	1Mpixel (=16 Modules)	16Mpixel (=32 Modules)	Single Chips (=2x3 cm ²)
Noise (r.m.s.)	<200 e ⁻ ENC	< 322 e ⁻ ENC < 214 e ⁻ ENC (HG)	< 100 e ⁻ ENC (G0) < 55 e ⁻ ENC (HG0)	<35 e⁻ ENC
Dynamic range	< 1·10 ⁴ x 12.4 keV (3 gain stages)	< 1·10 ⁴ x 12.4 keV (3 gain stages)	< 1·10 ⁴ x 12.4 keV (3 gain stages)	< 500 x 12.4 ke\ (2 gain stages)
Maximum frame rate	40 kHz (cont.) 1 MHz (burst)	< 5 MHz (burst*) * 352 frames	2.4 kHz (cont.) < 1 MHz (burst)	6-8 kHz (cont.)

²⁾ Common development with University of Bonn (GER), University of Hamburg (GER) and DESY (GER), ¹⁾ Common development with Desy

Benefits of charge integrating JUNGFRAU for MX

EIGER rate limited by pile-up \rightarrow JUNGFRAU enables faster data collection

EIGER loses efficiency in the corner of pixels \rightarrow JUNGFRAU provides better data quality

Leonarski et al., Fast and accurate data collection for macromolecular crystallography using the JUNGFRAU detector, *Nature Methods*, 2018

in collaboration with M.Wang et al., SLS PX1

"Easy" native-SAD in 600 ms

- Thaumatin
- 100°/sec, 60°
- 6 keV, 5×10^{11} phs/sec (full beam)

JUNGFRAU charge integrating detector compared with

EIGER single photon counting detector

- same pixel, module, detector size
- almost the same sensor thickness

"Real-life" native-SAD in 60 s

- Aminopeptidase, 101 kDa
- 10°/sec, 600°
- 6 keV, 5×10^{11} phs/sec (full beam)

11