

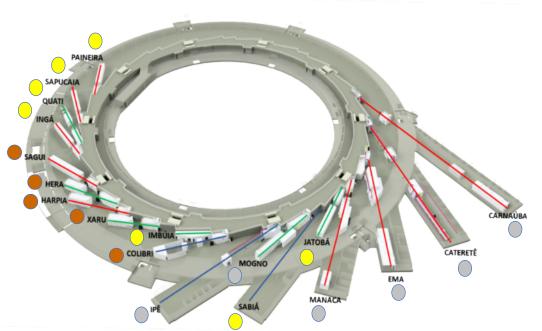
International Forum on Detectors for Photon Science

2021, March 25th

GM GA Project - Some Results

Jean Marie Polli LABORATÓRIO NACIONAL DE LUZ SÍNCROTRON LNLS Detectors Group jean.polli@Inls.br

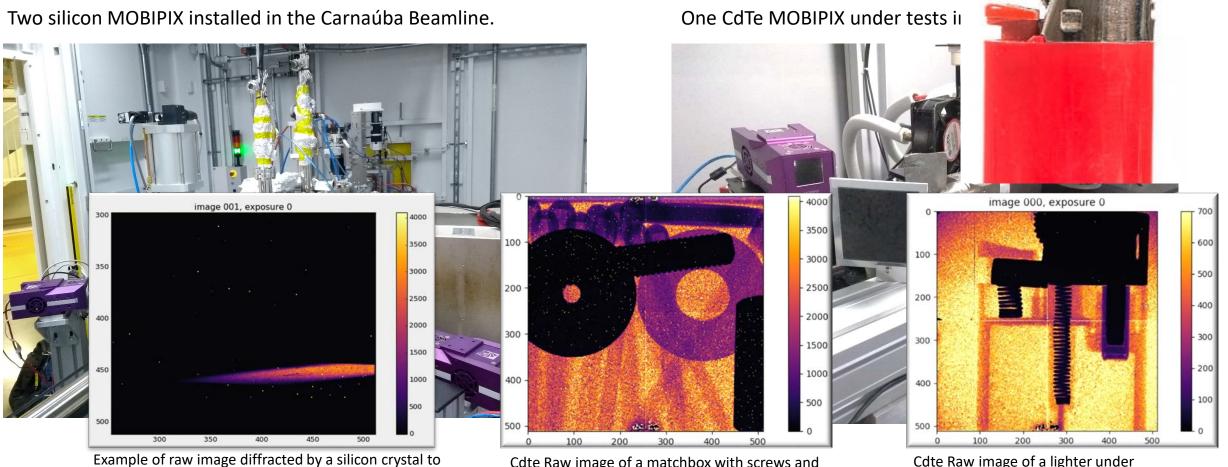
CNPEM Campus - 2020 february. Credits: CNPEM publicity.


- Detector needs at Sirius
- Detectors current status
- Detectors upcoming plan
- Detectors long-term expectations

Detector needs at Sirius

Phase	Number of beamlines	Status		
1-A	6	Construction 🔘		
2*	5	Funding 🛛 🔵		
1-B	7	Design 😑		
* Mainly refurbished beamlines from the UVX machine				

PHASE	BEAMLINE	ENERGY (keV)	TECHNIQUES	DETECTORS
I – A	MANACÁ	5 – 20	Serial micro and nano MX	1 Construction
I – A	EMA	3 – 35	Extreme Conditions	1 Construction + 1 project
I-A	MOGNO	20/40/70	Cone beam Tomography	2 Delivered
I - A	CATERETÊ	3 – 12	CDI, XPCS	1 Delivered
I – A	CARNAÚBA	2 – 15	spectro-ptychography	2 Delivered + 2 construction
I – A	IPÊ	0.08 - 2	AP-RIXS; ARPES	1 ccd Delivered
I – B	SABIÁ	0.25 – 2.5	AP-XPS; XMCD	
I – B	JATOBÁ	30 - 200	XRD-CT	
I – B	INGÁ	4 – 24	IXS	
I – B	QUATI	4 – 45	Quick-EXAFS	
I – B	SAPUCAIA	4 – 24	High-Throughput SAXS	🦲 1 Test
I – B	PAINEIRA	4 – 24	XPD	🛑 1 project
П	COLIBRI	0.1 - 1.5	PEEM, CDI	
П	ΙΜΒÚΙΑ	0.001 – 1 eV	nano-FTIR	
Ш	XARU	4 – 45	EXAFS	
Ш	HARPIA	5 - 30	TR-XPD	1 project
Ш	HERA	30 - 120	XTMS	
П	SAGUI	4-24	SAXS	PÁTRIA AMADA
				MINISTRY OF SCIENCE, TECHNOLOGY, INNOVATION AND COMMUNICATION

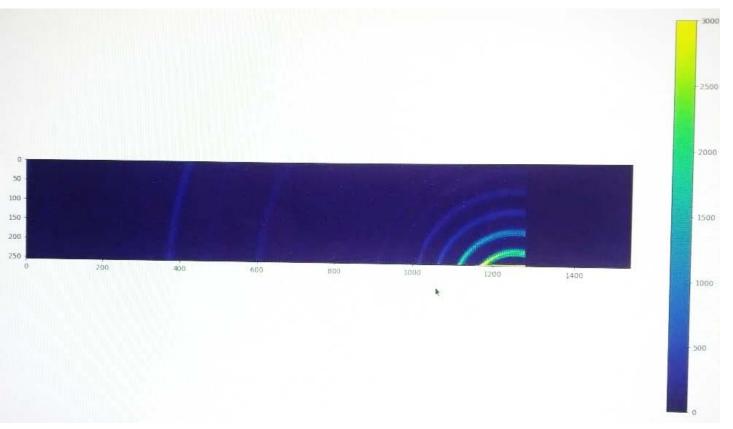

Detectors from IIM3GA Project There are five X-ray imaging cameras models Medipix3RX[1].					
		A A C	Are Sector		INGA HOD
	MOBIPIX 15D	PIMEGA 45D	PIMEGA 135D	PIMEGA 450D	PIMEGA 540D
Sensors (µm type)	300 Si / 1000 CdTe	300 Si	300 Si / 675 Si	300 Si / 675 Si	300 Si / 675 Si
Pixels (number / arrangement)	262,144 / 512 x 512	786,432 / 512 x 1536	2,359,296 / 1536 x 1536	1,310,720 / 256x5120	9,437,284 / 3072 x 3072
Pixel size (μm²)	55 x 55	55 x 55	55 x 55	55 x 55	55 x 55
Detection area (mm ²)	≈28 x 28	≈28 x 85	≈ 85 x 85	≈14.2 x 1710	≈170 x 170
Active area (%)	≈99.7	≈99.6	≈100 (minimal gaps)	≈100	≈99 (minimal gaps)
Incident Flux (counts/px/s)	3 x 10 ⁵	3 x 10 ⁵	3 x 10 ⁵	3 x 10 ⁵	3 x 10 ⁵
Max Dynamics range	24 bits	24 bits	24 bits	24 bits	24 bits
Frame rate @ 12/24bits (fps)	2000 / 1000	600 / 300	2000 / 1000	1000 / 500	2000 / 1000
Throughput @ 12bits (Gb/s)	6.3	5.7	56.6	87.9	226.5
Vacuum (10 ⁻³ mbar)	No	No	Yes	No	Yes
M – I NI S Det 03/2021					MINISTRY DF SCIENCE, TECHNOLOGY, INNOVATION AND COMMUNICATION

Three PIMEGA 15D (MOBIPIX) delivered

Example of raw image diffracted by a silicon crystal to check the beam coherence in the CARNAÚBA beamline.

Cdte Raw image of a matchbox with screws and washers under polychromatic x-rays.

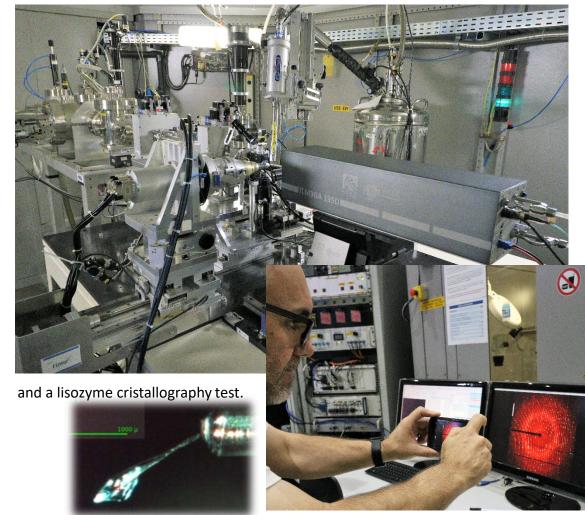
Cdte Raw image of a lighter under polychromatic x-rays.

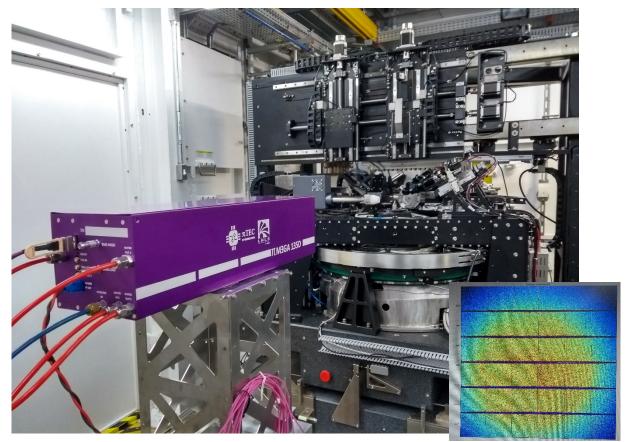


Two PIMEGA 45D Si prototypes delivered

One Silicon Pimega 45D installed in UVX Beamline for tests.

First AgBe diffractogram got using one PIMEGA 45D with silicon 300um HEXA sensor.





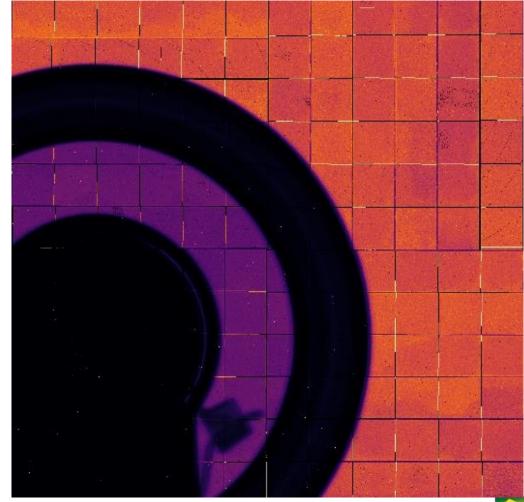
Two PIMEGA 135D delivered – prototype and Mogno beamline

Testing PIMEGA 135D in the MX2 (UVX Beamline)

PIMEGA 135D Si 675um testing Carnaúba beamline

Pimega 135D-675 under tests (image of ⁵⁵Fe radioactive source).

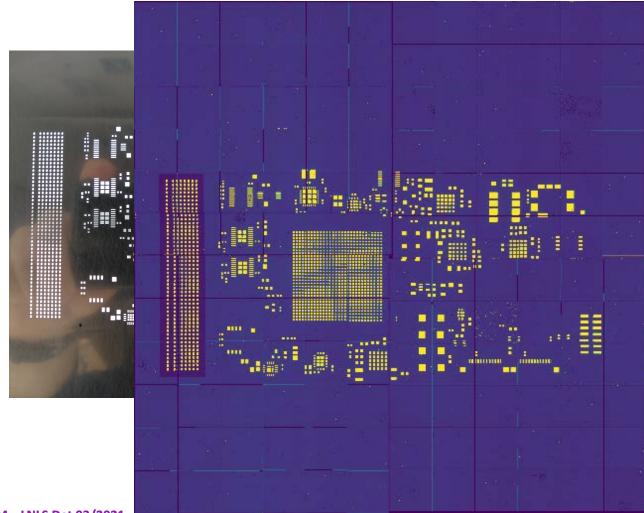
CNPEM – LNLS Det 03/2021

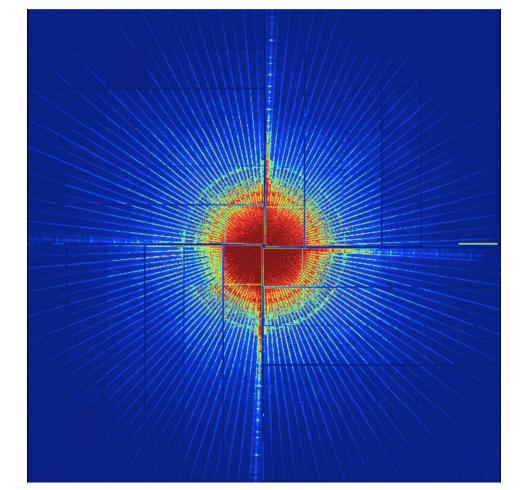


First PIMEGA 540D Si delivered Pimega 540D mounted in the vacuum chamber tunnel of CATERETÊ beamline.

Frame Rate Test: 1848 images per second with a metallic disk running at approx. 570RPM acquire time = 50us

MINISTRY OF SCIENCE, TECHNOLOGY, INNOVATION AND COMMUNICATION



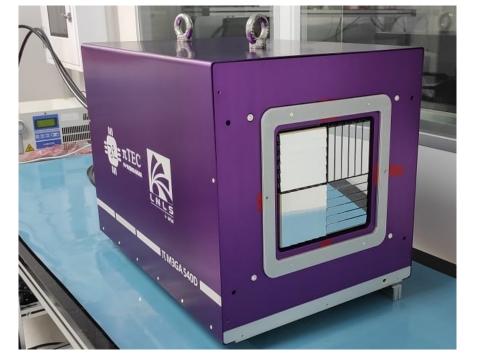


First PIMEGA 540D Si delivered

Electronic board Stencil Radiography in the CATERETÊ Beamline

Cateretê (Coherent And TimE REsolved scatTEring) Experiment goal: alignment purposes Setup: Distance: 12000 mm; Diffraction Patterr Credits: Aline Passos, Eduardo Miqueles, Florian Meneau, Jean Polli, Carla Polo

BRASIL



Second PIMEGA 540D Si under testing

Assembling PIMEGA 540D #2 detector for SAPUCAIA beamline

PIMEGA 540D #2 mounted for SAPUCAIA beamline

Detectors upcoming plan

PIM3GA Project – Delivery Plan for Next Detectors

Nata Stop		PIMEGA Model	SIRIUS BeamLines	Sensor Thickness (µm)	2021				
		PIMEGA MODE			Apr	May	Sep	Oct	Dez
MIGAA 1350		PIMEGA 540D	Ema	Si 675	1				
	2	PIMEGA 135D	Carnaúba	Si 300		1	1		
	3	MOBIPIX 15D	Carnaúba	Si 300		3			
		PIMEGA 450D	Ema	Si 675				1	
		PIMEGA 450D	Paineira	Si 675				1	
		PIMEGA 540D	Manacá	Si 300					1

Detectors long-term expectations

The ideal detector

Should have:

- 10⁹ pixels
- 1um spatial resolution
- 1eV energy resolution
- 1 fs time resolution
- count rates up to 10⁹ / pixel
- Efficient from 100eV out to 100keV

-And it should be free!

Shamelessly stolen from Peter Siddons

Cornell University Physics Department & CHESS

Detector Capabilities XDL-2011

Source: X-ray Detectors: State-of-the-art & Future Possibilities. Sol M. Gruner. Physics Dept. & Cornell High Energy Synchrotron Source (CHESS)

About Hybrid imaging detectors for SIRUS synchrotron:

Well, nowadays it is possible with the same Frame rate (2000 fps) but conflicts with last desire.

Microelectronics needs to be smaller.

New sensors materials and microelectronics improvements.

We reach us with larger areas as you want (or can pay).

Dynamic range needs improvements in sensors and analog circuits.

New sensors materials to cover larger energy ranges.

Thanks for invitation and to everyone worked in this project!

This document and its annexes may contain confidential and/or privileged information. Observe its content carefully and consider possible querying to the owner before copying, printing, disclosing or distributing it. If you have received a copy of this document by mistake, please notify the owners and delete or destroy it immediately.

For use in agreed purposes only.

This document version is "**IIMEGA Project – Some Results**", aiming presentation in the **IFDEPS International** Forum on Detectors for Photon Science 2021, March 25th.

Acknowledgment

LNLS groups:

DET <u>www.lnls.cnpem.br/grupos/det/</u>

Marcos R. Bissiano Errada <u>marcos.errada@Inls.br</u> Laís Oliveira de Souza <u>lais.souza@Inls.br</u> Gustavo Siqueira Gomes <u>gustavo.siqueira@Inls.br</u> Renato Candido Reis <u>renato.reis@Inls.br</u> João Pedro Aguiar de Mello <u>joao.melo@Inls.br</u> Allan Borgato <u>allan.borgato@Inls.br</u>

SOL	CNPEM Groups :			
GCC	TIC			
DIG	SIN			
GIE	CON			
lqu	AJU			
OFI				
MAT				
VAC				
SIL				
GAMS				
MANACÁ	Å			
CATERETÊ				
CARNAÙBA				

Partnership: www.pitec.co

Companies:

Institutes:

PÁTRIA AMADA

BRASIL