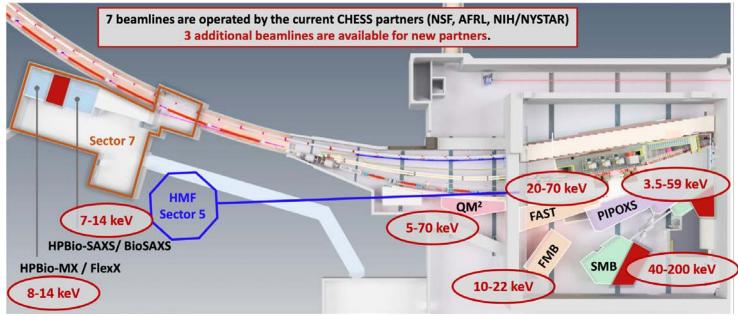

CHESS facility report and detector development at Cornell

IFDEPS Virtual Thursdays 2021 Kate Shanks – ksg52@cornell.edu March 25, 2021



Cornell High Energy Synchrotron Source (CHESS)

Cornell High Energy Synchrotron Source (CHESS)

Detector needs at CHESS:

- Support for imaging, scattering, and spectroscopic techniques
- Efficient detection of high-energy x-rays (especially >20 keV)
- Large area detectors to support certain scattering techniques (e.g. high-energy diffraction microscopy, protein crystallography, ...)
- Wide dynamic range to make full use of increased source brilliance, and to support seamless data collection of dynamic signals
- Fast frame rates to support time-resolved experiments
- Movement towards on-the-fly data processing to help users wrangle large datasets

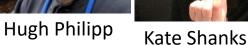
Detector activity at Cornell and CHESS

Detectors in active circulation at CHESS (a non-comprehensive list):

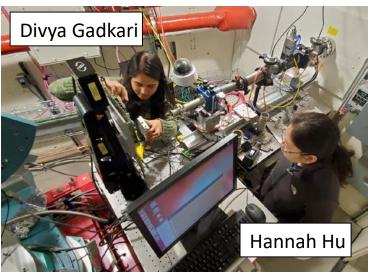
- Lens-coupled CMOS/CCDs primarily for imaging: Andor Neo, Retiga 4000DC
- Large-area flat-panel detectors primarily for scattering: Dexela 2923, GE RT41
- Pixel array detectors: Eiger 1M, Eiger 500k CdTe, many Pilatus incarnations, CdTe PIXIRAD, CdTe MM-PAD
- Energy-resolving detectors: Vortex SDDs, Si-sensor Maia

Detector development:

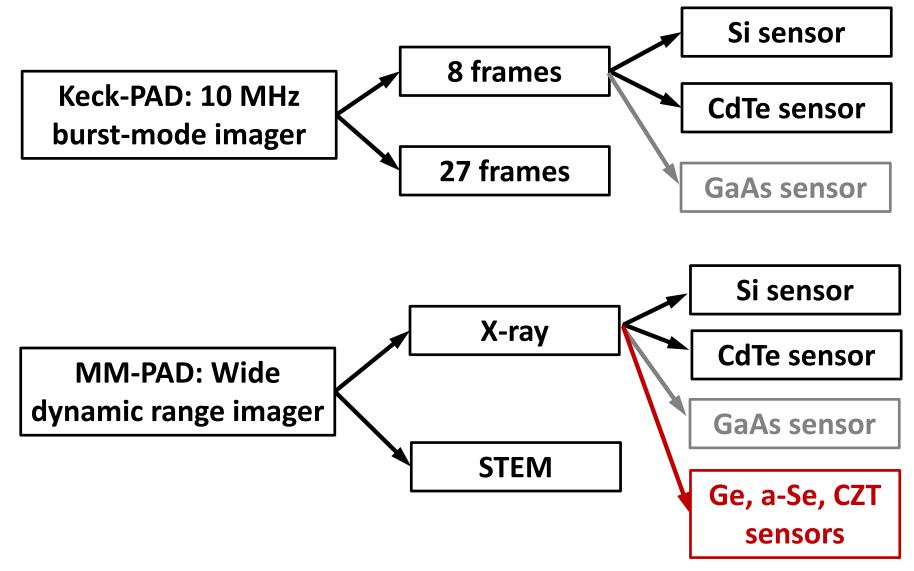
- Largely seated in the Gruner/Thom-Levy group
- External collaborations: Argonne, BNL, SLAC, Sydor Instruments, Thermo Fisher, MIT-LL, ...
- Frame rate and dynamic range are major design focuses
- Additional focus: training students and post-docs



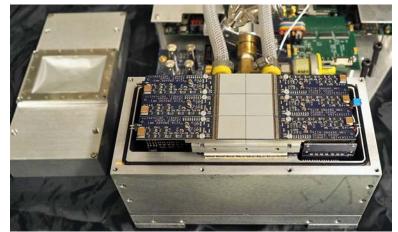
Sol Gruner

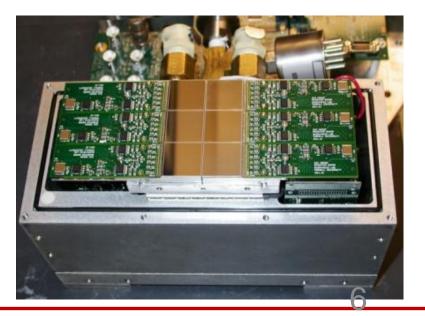


Mark Tate



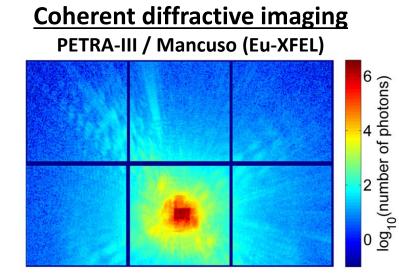
Marty Novak


Two Families of Integrating Detectors

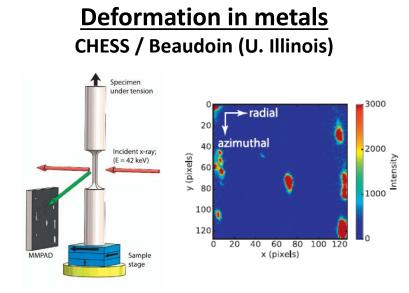

Keck-PAD (up to 10 MHz)

Read time	150 ns separation between stored frames;
(burst mode)	readout: 860 μs/stored frame
Storage caps/pixel	8
Read noise	1 photon @ 8 keV (high gain) 4 photons @ 8 keV (low gain)
Well capacity	~1100 8-keV photons (high gain) ~ 7300 8-keV photons (low gain)

MM-PAD 1.0 (up to 1.1 kHz)


Read time (continuously)	860 μs/frame -> 1.1 kHz continuous
Read noise (RMS)	0.16 photons @ 8 keV
Well capacity	4.7 x 10 ⁷ photons/pix/frame @ 8 keV
Sustained count rate	>10 ⁸ ph/pix/s
Instantaneous count rate	>> 10 ¹² ph/pix/s

IFDEPS Virtual Thursdays 2021 - Shanks - March 25 2021


MM-PAD: applications

Wide dynamic range gives extraordinary experimental flexibility

Giewekemeyer et al., Journal of Synchrotron Radiation (2014)

- Capture scattering pattern from Au test object, allowing ptychographic image reconstruction with ~25nm resolution
- Key detector features: wide dynamic range, fidelity at high incident photon rates (>10⁷ ph/pix/s in central spot)

Chatterjee et al., J. Mechanics & Physics of Solids (2017)

- Probe grain-level deformation mechanisms and residual stress in polycrystalline Ti-7Al alloy under applied stress gradient
- Key detector features: CdTe sensor for efficient detection of 42 keV photons

<section-header>

Antonio et al., Nat. Communications Materials (2021)

8.02

8.025

- Observe Bragg peak splitting in UO2 during 10ms magnetic pulse
- Key detector features: Fast (1 kHz) continuous frame rate

Cornell/APS MM-PAD-2.1

		(8 keV equival
	# of pixels per chip	
Update to MM-PAD-1.0	Pixel size	
design Collaboration with detector group at APS - APS: firmware, support electronics - Cornell: ASIC	Sensor	Si
	Electron-collection capability?	No – holes
	Frame rate	1.1 kH
	Duty cycle	0% at max fra
	Read noise	0.16 pho
	Well capacity	4.7x10 ⁷ ph

-

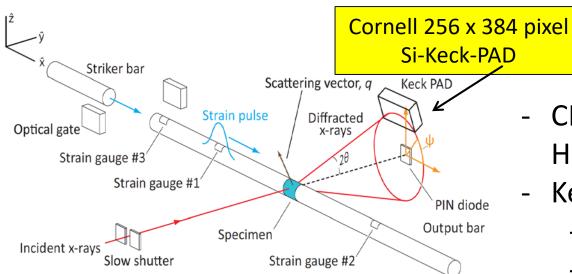
-

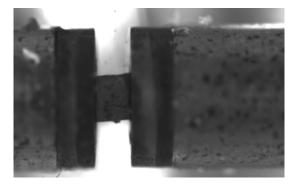
Cornell University

Specification	MM-PAD-1.0 (8 keV equivalent units)	MM-PAD-2.1 target (20 keV equivalent units)	
# of pixels per chip	128 x 128		
Pixel size	150 μm		
Sensor	Si	CdTe	
Electron-collection capability?	No – holes only	Yes – collect electrons or holes	
Frame rate	1.1 kHz	<u>></u> 1.1 kHz	
Duty cycle	0% at max frame rate	<u>></u> 90%	
Read noise	0.16 photon	<u><</u> 0.1 photon	
Well capacity	4.7x10 ⁷ photons	10 ⁸ photons	
Instantaneous photon rate	> 10 ¹² ph/s/pix	> 10 ¹² ph/s/pix	
Sustained photon rate	> 10 ⁸ ph/s/pix	> 10 ⁹ ph/s/pix	

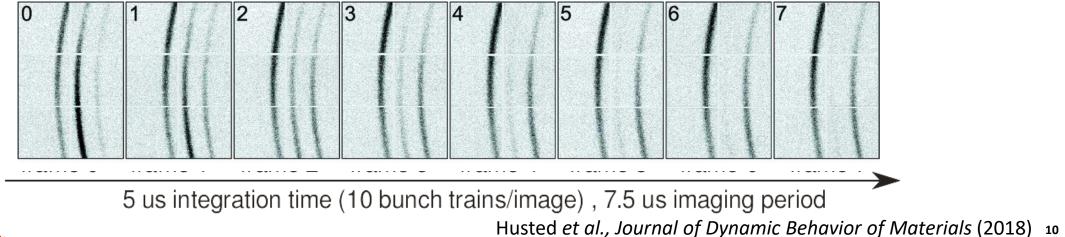
MM-PAD-2.1 full-scale system

128x128 pixel test pattern


- 128x128 pixel full-scale ASIC fabricated in early 2020
 - Modifications for reduced read noise
 - June 2020: ASIC confirmed functional using in-pixel test sources
- Single-chip Si, CdTe hybrids have been assembled, and x-ray testing is underway
- Four 256x384 pixel systems planned: 2 at Cornell, 2 at APS
- Selectable readout of full array at continuous frame rate of 1.6 kHz or 128x128 pixel area at 9 kHz

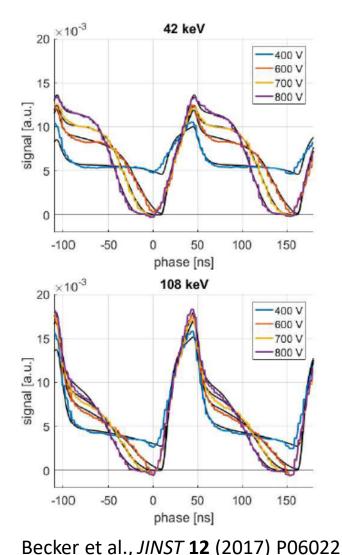


Keck-PAD: Microsecond dynamics


Deformation of metal compounds under high strain rates

Optical video, 1 million FPS

- CHESS G3 with Hufnagel group @ Johns
 Hopkins & Army Research Office
- Key detector features:
 - Fast frame rate
 - Good single-photon SNR



IFDEPS Virtual Thursdays 2021 - Shanks - March 25 2021

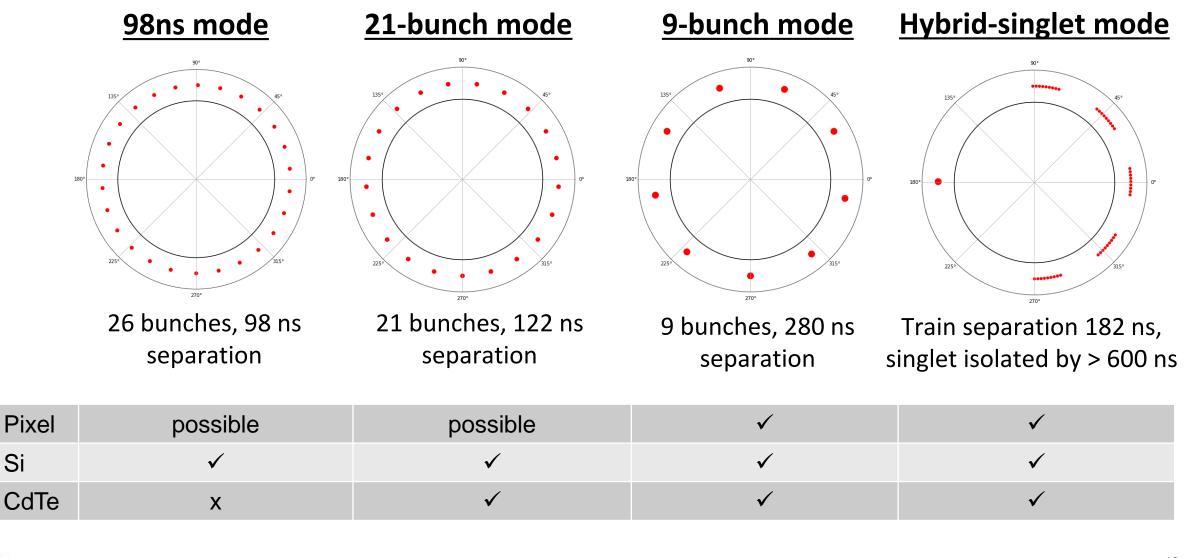
Single bunch imaging at 153 ns with CdTe

69 keV

^{×10&}lt;sup>-3</sup> 20 600 \ 700 V 15 -800 V signal [a.u.] 50 100 -100150 phase [ns] Charge collection time 110 105 100 time [ns] 95 90 42 keV 85 69 keV 108 keV expected value 75 750 800 600 650 700 bias [V]

Beamline: APS 35ID-E (DCS) – 153 ns bunch separation

Energy: 7.1 keV fundamental, with harmonics up to >120 keV


Measure isolated diffraction spots from copper foil

Measured response (solid) in excellent agreement with drift & diffusion simulations (dotted)

Charge collection times ~100 ns are feasible with 750 μm thick CdTe

Proposed CHESS fill patterns for single-bunch experiments

speeds

Keck-PAD

Ongoing and future work

- High-Z alternatives to CdTe are under active investigation
- Larger-format (512 x 512 pixel, 1k x 1k pixel) variants of Keck and MM-PAD are being built and commercialized by Sydor Technologies
- MM-PAD-2.1 system development to achieve full-frame, continuous 10 kHz operation
- Next-generation MM-PAD ASIC development goals: increased radiation hardness, onchips DACs for bias generation, frame rates beyond 10 kHz, ...
- Exploring concepts for on-the-fly data reduction/processing in firmware

Thank you!

- Detector development funding: U.S. DOE, DTRA, NIH, Keck Foundation, Kavli Foundation
- CHESS funding: NSF, Air Force Research Department, NIH, NYSTAR

