Residual Stresses and Crystal Orientation in Biominerals revealed by Dark Field X-ray Microscopy

Vanessa Schoeppler UC Berkeley, Department of Physics – STROBE / Advanced Light Source, LBNL – COSMIC

Igor Zlotnikov B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden

Workshop on DFXM
Complex Architectures of Biominerals

CALCIUM PHOSPHATE:
Structural Support

CALCIUM CARBONATE:
Structural Support, Protection, Optical Functions
Correlative analysis of the spatial arrangement and crystallographic properties of biominerals allows us to analyze mechanical properties, to analytically describe the morphogenesis and to evaluate the thermodynamic and kinetic parameters governing its formation.
The morphology of these biological structures can be predicted with simple thermodynamic principals → adds a fundamentally new perspective to the field of biomineralization, the shells evolution and biomimetic material design.
Residual Stresses

Residual strains in biogenic calcite and aragonite

Residual strains prevents crack propagation

Toughening of calcite optical brittle star lenses

Bragg Ptychography reveals domains in calcite prisms

The role of residual stresses in biomineral formation has never been investigated
Techniques

HRTEM
High Resolution Transmission Electron Microscopy

+ High spatial resolution (sub ångström)
- Excessive sample prep
- Low strain resolution
- Sample environment
- Small field of views

3D XRD / DCT
3D X-Ray Diffraction / Diffraction Contrast Tomography

+ Polycrystalline materials
+ Bigger volumes
- Lower spatial resolution (usually microns)

CDI/Bragg Ptychography
Coherent Diffraction Imaging / Ptychography

+ High spatial resolution (~ 10 nm)
+ High angular resolution (~ 0.005 °)
- Small sample sizes (100 nm-2 µm)

DFXM
Dark Field X-Ray Microscopy

+ Adjustable resolution range (30 nm–300 nm)
+ High angular resolution (~ 0.001 °)
+ Bigger sample sizes (< 0.5 mm)
+ In-situ setups
Samples

Calcite prisms of *Pinna nobilis*:

- Single-crystal-like with very small misorientation distribution (< 1°)

150 µm
Samples

Calcite prisms of *Pinctada nigra*:

- Initially prisms appear single-crystal-like
- Crystals rotate gradually and split while maintaining the gradual change in orientation
- Total misorientation distribution 10°-20°
Dark-Field X-Ray Microscopy

calcite
Results *Pinna nobilis*

Radiograph of the tip of an isolated *P. nobilis* prism.

Sample was tilted 45° to fit Bragg conditions for 104 plane. Line scans were collected starting at the tip upwards:

- 78 nm x and 310 nm y resolution
- < 0.01° angular resolution
- 200 nm line beam in 1 µm steps

MOSAICITY

- θ: -0.05° to 0.15°
- η: -0.15° to 0.15°

LATTICE

- 100 rotation axis
- 120 rotation axis
- Calcite slip systems
Results *Pinna nobilis*

GROWTH LINES:

Elemental Variations:

Organic Variations:

Results *Pinctada nigra*

Radiograph of the *P. nigra* prism.

Sample was positioned horizontally to fit bragg conditions for 104 plane and line scans were collected starting at the tip upwards:

- 4x4 binned
- 310 nm x and 1.2 µm y resolution
- < 0.4 ° angular resolution
- 200 nm line beam in 1.5 µm steps
Results *Pinctada nigra*

d-space

120 rotation axis

100 rotation axis
Conclusions

Results:

- Reveal mosaicy and orientational gradients in *P. nobilis*
- Correlate specific crystallographic rotations to residual strain
- Similar lattice distortion patterns in *P. nobilis* and *P. nigra*, despite crystallographic differences
- Correlate shape and strain patterns in P. nigra and compression with initial grain splitting

DFXM for biomineral characterization:

- Adjustable spatial and high angular resolution → large field of views & and minor sample preparation allow comprehensive and correlative analysis of strain orientation and shape
- Single and polycrystalline
- Adjustable sample environment → no vacuum

Multiscale correlative approaches are essential for biomineral studies
Acknowledgements

Roger Falcone
Department of Physics / Knowledge Transfer Associate Director
UCB / STROBE

David Shapiro
Program Lead
Beamline 7.0.1

Young-Sang Yu
Staff Scientist
Beamline 7.0.1

Hendrik Ohldag
Staff Scientist
Beamline 11.0.2

Juliane Reinhardt
Project Scientist
Computing, Development

Matthew Marcus
Staff Scientist
Beamline 5.3.2.2

Richard Celestre
Beamline Associate

Margaret Murnane
Director and PI
University of Colorado Boulder

Naomi Ginsberg
Electron Imaging Lead and co-PI
UC Berkeley

John Miao
Deputy Director and co-PI
UC Los Angeles

Thank you for your attention!