3D and 4D sub-grain mapping of lattice strains and orientations in polycrystals using Diffraction Contrast Tomography (DCT)

Péter Reischig^{1,2}, Wolfgang Ludwig^{1,3,4}

¹ ESRF, Grenoble, France
 ² InnoCryst Ltd, Daresbury, UK
 ³ MATEIS, INSA Lyon, France
 ⁴ CNRS, France

Reischig & Ludwig Current Opinion in Solid State & Materials Science 24 (2020) 100851

ESRF DFXM online workshop 06 May 2021

Motivation: simplicity, efficiency, speed, statistics

Sub-grain 3D strain maps in polycrystals by DCT

Inferring locally in a complete 3D section:

- crystallographic phase
- orientation: *3 parameters*
- strain: 6 parameters
 - complete strain/stress tensor
 - local unit cell

Performance goals:

- spatial resolution: 1...5 um
- orientation & strain resolution: 1...5 x 10⁻⁴
- scanning times: minutes to hours

Strain tensor components in the Sample reference (Gum Metal at 365 MPa)

Diffraction Contrast Tomography (DCT) setup

Combination of (hkl)-s reflections

Composite frame of all indexed and summed (hkl) diffraction spots of Grain #1

© InnoCryst Ltd, UK, 2021

Péter Reischig, ESRF DXFM Workshop, 2021

diffraction spot

Diffraction model & Iterative Tensor Field Reconstruction

Model:

- kinematical model: intensities add up
- grain-by-grain
- seeking:
 - 3D shape
 - 9D deformation field:
 - 3 misorientation
 - 6 strain
- ray tracing from voxellated volume
- solving a single load step

Recontruction challenge:

- projection of a voxel moves across several pixels
- projection geometry unknown
 → large non-linear problem
- underdetermined (ill-posed)

Solver:

- iterative non-linear
- locally linearised large scale optimisation
- smooth deformations

detector

Péter Reischig, ESRF DXFM Workshop, 2021

4D scan – Time resolution via sliding window

Full volume scans

Single grain scan

Sycnhrotron experiment on Gum metal

Experiment: Gum Metal under tensile strain

- material: Gum Metal (Ti 36Nb 2Ta 3Zr 0.30 wt%) sustains elastic strains up to 1.5 .. 2 %
- sample: ~0.6 mm thick dog bone; ~1500 grains in gauge volume
- beamline: ID11 ESRF
- beam: 40 keV, monochromatic bandwidth dE/E = 10⁻³
- ω rotation: continuous, gap-free, 0.05 ° steps, 7200 images
- exposure time: 1.5 sec / frame Now with brand new ESRF EBS source: 20x faster !
- pixel size: 1.4 um
- distance:
- load levels:
- 1) 33 Mpa **2) 365 Mpa - Presented**

7 mm

Simulated vs observed diffraction spots

Gum metal at high load (365 MPa): 1500 grains in grain map

Left: Measured Right: Simulated

Simulated vs observed diffraction spots

Gum metal at high load (365 MPa): 1500 grains in grain map

Left: Measured Right: Simulated

Deformation solver – Convergence (high load)

© InnoCryst Ltd, UK, 2021

Péter Reischig, ESRF DXFM Workshop, 2021

Sub-grain misorientation

- Orientation: 3-component Rodrigues vector or 3 Euler angles
- Misorientation angle: scalar

Misorientation from grain mean

Sub-grain misorientation

Rodrigues vector components deviation from the grain mean

Sub-grain strain maps

Strain tensor components in the Sample reference

© InnoCryst Ltd, UK, 2021

Péter Reischig, ESRF DXFM Workshop, 2021

Sub-grain strain maps

Strain tensor components in the Sample reference

Sub-grain strain maps

Strain versus grain average

Fitting of single crystal elastic constants from DCT or 3DXRD data

Fitting of elastic constants from strain maps

Conclusions

- DCT: simple setup but challenging reconstruction
- efficient mapping of polycrystals at sub-grain level:
 - (mis)orientation & strain in the bulk in 3D
 - potential for 4D time resolved scans
 - non-destructive, in-situ
 - spatial resolution: 1...5 um
 - orientation & strain resolution: possibly 1...5 x 10⁻⁴
 - scanning times: minutes to hours
- direct comparison to digital twins in modelling
- can provide the single crystal elastic moduli
- can handle slow sample or energy drifts
- best adapted to:
 - coarse grains (> 10 um)
 - limited deformation (few %)

3D and 4D sub-grain mapping of lattice strains and orientations in polycrystals using Diffraction Contrast Tomography (DCT)

Péter Reischig^{1,2}, Wolfgang Ludwig^{1,3,4} peter.reischig@innocryst.com, ludwig@esrf.fr

¹ European Synchrotron Radiation Facility, Grenoble, France

² InnoCryst Ltd, Daresbury, UK

³ MATEIS, INSA Lyon, France

⁴ CNRS, France

Acknowledgements:

Max Langer (CNRS) Dimitris Karkoulis (ESRF) Nicola Viganò (ESRF) Andrew King (Soleil) Tilo Baumbach (KIT Karlsruhe) Jon Wright (ESRF) José Baruchel (ESRF) Shigeru Kuramoto (Ibaraki Uni.)

3D reconstruction of intragranular strain and orientation in polycrystals by near-field X-ray diffraction *Reischig & Ludwig Current Opinion in Solid State & Materials Science 24 (2020) 100851*

🔅 InnoCryst