

WORKSHOP ON DFXM

6-7 May 2021

WELCOME AND

Introduction to Ebs

Harald Reichert

STREAMLINE has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 870313

X-RAY SCIENCE COMMUNITY'S QUEST FOR MORE BRILLIANCE

The quest for more brilliance and coherence to the benefit of Science

The aims of the EBS project:

- To decrease the storage ring horizontal emittance (= a factor 100 better than the 3rd SR generation)
- To increase the source brilliance (= a factor 100)
- To increase the coherence of the beam (= a factor 30)
- With the constraints to re-use an existing infrastructure and minimising the impact on the ESRF activity

NEW LATTICE VS. PRESENT ESRF LATTICE: DBA → HMBA

> Previous ESRF lattice (cell)

Double Bend Achromat = (2 dipoles + 15 quad. sext.) per cell ID length = 5 m (standard) / 6m / 7m

$$\varepsilon \propto \frac{E_e^2}{\left(N_{sect} \cdot N_{dipole}\right)^3}$$

► EBS lattice (cell)

Hybrid 7 Bend Achromat = (4 dipoles + 3 dipole-quad + 24 quad., sext., oct.)
ID length = 5 m

31 magnets per cell instead of currently 17
32 cells (arcs) with 4 girders each

2019 DECEMBER 15TH: FIRST ACCUMULATION

25TH AUGUST 2020: A TIME TO REMEMBER!

The 25th August 2020, first official USM shift starts

- 28 beamlines take beam
- 200 mA
- $\varepsilon_x = 150 \ pm \cdot rad$
- $\varepsilon_z = 20 pm \cdot rad$

On-schedule beam delivery proofs the very advanced state of the new machine

CPMUS AT SMALLER GAP: INCREASED BRILLIANCE

FIRST BEAM AT ID15A

40 keV

70 keV

100 keV

monochromatic beam from a U35 [Laue-Laue monochromator with approx. 0.3% energy resolution] (band width narrower than undulator harmonics)

images taken at \sim 65 meter with PCO-edge camera with 1:1 optics (6.7 μ m pixel size)

EBS – the first 4th generation high energy SR source: A big step forward for X-ray science

The beamlines (ID & BM) report a beam performance increase as calculated

Increase in flux and flux density
Increase of the coherent fraction
Significant improvement in beam stability

DIFFRACTION @ BEAMLINE ID01: 1ST COHERENT DIFFRACTION PATTERNS OF SMALL PT NANOPARTICLES

Pt nanoparticles embedded in alumina

Energy: 9 keV Detector distance = 19.5 cm

counting time = 1 sec.

counting time = 20 sec.

3D diffraction pattern: 22 nm

ID01 CEA Oregon Univ.

COHERENT DIFFRACTION AT HIGH ENERGY @ BEAMLINE ID31

BCDI @ 41keV on ID31

Pt crystals: ~600 nm diameter Delivered flux: ~ 3 x 108 ph/s

Spot size: 9x10 μm

Rocking curve acquisition: 4 min

Improvement by another 2 orders of magnitude in flux density within reach

~40 fringes visible in 5 s exposure

Pt on ZrO₂ SEM image

Rocking curve projection along transverse and longitudinal axes

Sufficient flux density for particles 10-15x smaller with penalty to speed (90 min acquisition)

I. Martens, M.-I. Richard, S. Leake, J. Drnec, V. Honkimäki

Diffraction based Transmission X-ray Microscopy

Optics < 15 keV: zone plates

> 15 keV: compound refractive lenses

10 nm

100 nm => 20 nm

HXDM ON ID06 - SAC 2018

H. F. Poulsen, Technical University of Denmark (DTU):

ERC-Grant "Diffraction-based transmission x-ray microscopy d-TXM (10/2012 – 09/2017)

ERC-Grant "The Physics of Metal Plasticity (2020-2025)

H. Simons, Technical University of Denmark (DTU):

ERC-Grant "3D Piezoresponse X-ray Microscopy (2019-2023)

Scientific goal

- Development of multi-scale materials characterization continuously covering length scales from 1 mm to 10 nm.
- Coupling to 3D modeling
- Basic mechanisms underlying plastic deformation & phase transformation in metals

Results

- Development of dark-field X-ray microscopy
- Construction of a dedicated instrument at ID06
- Improvement of the real-space resolution from ~3 µm (DCT and 3DXRD) to ~ 100 nm (DFXRM) and ~30 nm (multilayer Laue lenses)
- Demonstration of Bragg CDI in bulk materials to ~ 13 nm @ ID01
- 28 publications

REMAINING EBS PROGRAMME

- Four new beamlines fully optimized for EBS
 - EBSL3-BM18: High throughput large field phase-contrast tomography beamline
 - · EBSL8-ID29: Serial crystallography beamline
 - EBSL1-ID18: Beamline for coherence applications
 - EBSL2-ID03: Beamline for hard X-ray diffraction microscopy

on all beamlines

New beamline control software

Scientific software Library

Refurbishment Programme

ID18 (ID14), ID21, ID24, BM23, ID27, ID32

New insertion devices

10 new high-end 2D detectors

New access modese.g. BAG, mail-in, etc...

SCIENTIFIC DATA ANALYSIS AND MANAGEMENT FOR EBS – SAC 2019

Workshop on Dark Field X-ray Microscopy 6-7 May 2021

STREAMLINE

STREAMLINE has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 870313

@esrfsynchrotron - www.esrf.eu

Page 15