Magnetic field measurements of superconducting dipole magnets for the SIS100 Synchrotron

Florian Kaether

GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt

IMMW21, Grenoble 2019, June 24 - 28

Preliminary draft

F. Kaether (GSI)

FAIR

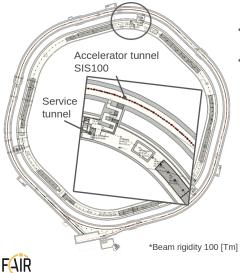
Magnetic field meas. SIS 100

The FAIR project

$\mathbf{FAIR}=\mathbf{F}\text{acility}$ for Antiproton an Ion Research

Existing GSI facility FAIR facility SIS100 **SIS18** p-LINAC UNILAC

International project

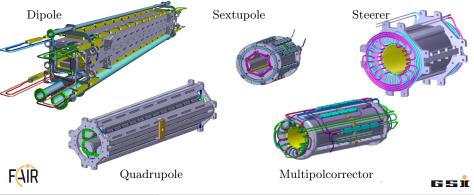


- High intensity ion and antiproton beams for experiments in nuclear, atomic, plasma physics and material science.
- Existing facility UNILAC/SIS18 will provide ion-beam source and injector for FAIR.

Heavy Ion Synchrotron SIS100

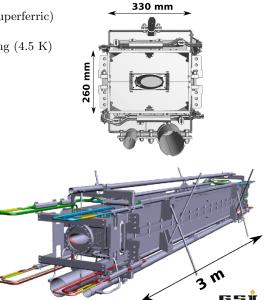
SIS100 = SchwerionenSynchrotron 100 [Tm] = Heavy ion synchrotron (beam rigidity 100 [Tm]*)

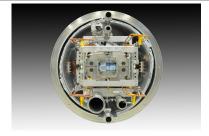
- Hexagonal, circumference 1083.60 m
- Operational modes:
 - Ultra High Vacuum (10⁻¹¹mbar)


 Adsorption by cold vacuum chamber (10 - 15K)
 Superconducting (magnet)
 - accelerator
 - Fast-ramp machine ~0.5 sec. to maximum field

*Beam rigidity 100 [Tm] = Bending dipole field 1.9 [T] × Bending radius 52.632 [m]

Magnets for SIS100


		Main Dipole	Main Quadrupole	Multipole corrector (nested)			Steerer (nested)	Chromaticity sextupole
	unit			Quadrupole	Skew sextupole	Octupole	Horizontal/ Vertical	Sextupole
Number of Magnets		108	166	12	12	12	83	48
Magnetic field strength	T/m ⁿ⁻¹	1.9	27.7	0.75	25	333.3	0.3	175
Effective length	m	3.062	1.3	0.75			0.5	0.5
Usable aperture	mm			150			135/65	135/65
Ramp time to Max.	Sec.	0.5		0.15	0.24	0.24	0.2	0.175


The SIS100 Dipole Magnet design parameters

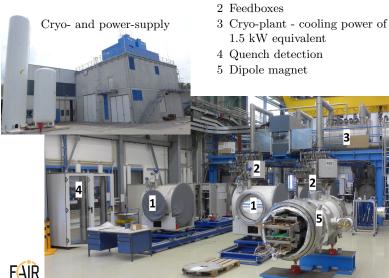
Specifications and beam dynamic requirements:

- Iron dominated superconducting (superferric) magnets
- Forced flow two phase helium cooling (4.5 K)
- Maximum magnetic induction
 - $B_{max} = 1.9 \,\mathrm{T}$
- Maximum ramp rate dB/dt = 4 T/s
- Field homogeneity requirement $\Delta B/B = \pm 6 \times 10^{-4}$
- Yoke gap height variations $\Delta h = \pm 0.1\,\mathrm{mm}$
- Yoke length
 - $L_{\rm Y} = (3.002 \pm 0.0004) \,\mathrm{m}$
- Effective magnetic length $L_{\rm Eff} = 3.062 \,{\rm m}$
- Total length (coils) $L_{\text{Tot}} = 3.2 \,\text{m}$
- Bending angle $3\frac{1}{3}^{\circ}$
- Radius of curvature 52.632 m

SIS100 Dipole Magnet

Nuclotron cable:

- 1 Cooling tube CuNi
- 2 SC wire NbTi
- 3 CrNi wire
- 4 Kapton tape
- 5 Glasfiber tape



Magnetic field meas. SIS 100

GSI

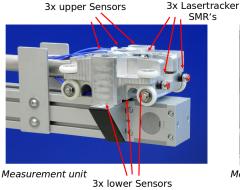
1 Endbox

F. Kaether (GSI)

651

Testing overview

- Yoke geometrie:
 - $\circ~{\rm Aperture~height}$
 - $\circ~{\rm Sag}$ and twist
 - \circ Position
- Process lines
 - Pressure and leaks
 - $\circ\,$ mass flow rate
 - \circ positioning
- Electrical tests
 - High Voltage
 - Continuity (voltage tabs for quench detection)
 - $\circ~$ Turn-to-turn Insulation
- Quench detection
- Static heat load and AC-losses


- Magnetic field
 - Integral B-field
 - \circ Harmonics
 - Load line (transfer function)

- For all dipole magnets (110 in total):
 - \rightarrow about 30 parameters to control
 - $\rightarrow~$ about 100 steps to follow
 - \rightarrow duration ~ 3 weeks

Aperture Height Measurement of SIS 100 Dipoles

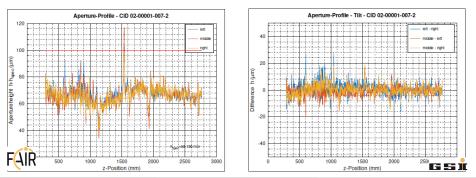
Sensorcarrier with capacitive Sensors und Lasertracker SMR's

Measurement unit insertion

Aperture height measurement results

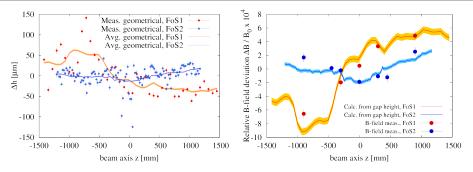
Height:

Specification: $h_{\text{spec}} = 68.130^{+0.1}_{-0.0} \,\text{mm}$


Measurement errors:

- repeatability: $\pm 3\mu m$
- absolute: $\pm 15 \mu m$

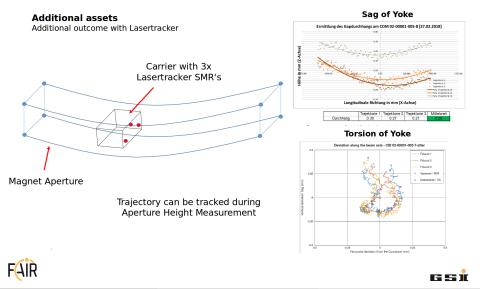
Tilt: no specifications


If there is something conspicious it would be a warning. Maybe there would be correlations with higher harmonics in the magnetic field.

But: no indications up to now !

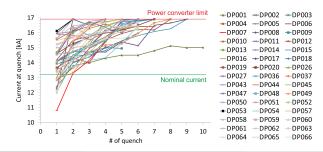
F. Kaether (GSI)

Dipole



- Magnetic field measured at different positions along the beam axis with rotating coils
- Relative gap height deviations measured with high resolution along the beam axis with capacitive sensors.
- Gap data averaged with respect to rotating coil length of 600 mm.
- Conversion of gap height to field strength using $B = \frac{IN\mu_0}{h}$ (and arbitrary offset correction)
- $\triangleright\,$ Comparison with B field measurements in good agreement

Sag of yoke

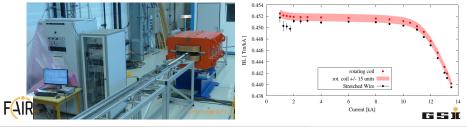

Quench training

Specifications:

- nominal current of 13.2 kA has to be reached
 - before 3^{rd} quench in the first cycle
 before 1^{st} quench from now on
- de-training limited to 5% (compared to previous quench)
- quench current has to stabilize at > 110% at least (14.5 kA).

Results:

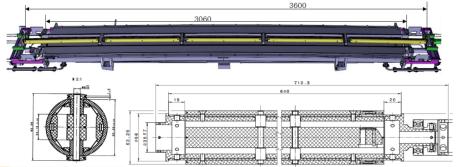
- nominal current reached at 2nd quench at least
- no significant de-training observed
- \rightarrow Excellent quench performance!
- \rightarrow Limit of cable (17.8 kA) nearly reached
- \rightarrow high stability of coil structure in the yoke



Calibrations

- Measure segment by segment at 300K in a normal conducting magnet
- Magnetic field is known from hall probe and NMR mapping.
- \rightarrow absolute field strength calibration
- \rightarrow calibrate gaps in between the coils (needed for magnetic length)
- Compare tilt angles from segment to segment
- \rightarrow apply correction for cold measurements (with small constraints).

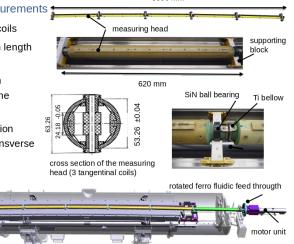
- Additional measurement with a stretched wire
 - $\circ\,$ different lab at GSI
 - \circ different power converter
- \rightarrow independet determination of the magnetic length
- \rightarrow confirmation of systematic error estimation of rotating coil results of ± 15 units


F. Kaether (GSI)

Magnetic field meas. SIS 100

Rotating coils

Mechanical design of the shaft of rotating coilf for the cold measurements


- · Shaft length 3.6m to cover a full magnet length (3.06m) + stray field area
- 5 segments 0.64m 3 for the central field + 2 for the stray field
- · Intermediate space between segments 100 mm
- measuring heads with a dipole compensation (2 coils + 1 "spare")
- Coil length 60mm, 256 turns, effective surfase 1.67 m2

Rotating coils

System for magnetic field measurements

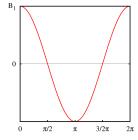
- ✓ 5 measuring heads tangential coils
- ✓ 3 pick up coils per head, 600 mm length
- ✓ effective surface 1.67 m²
- ✓ Ti-alloy bellows interconnection between segments and to align the heads along the beam axis
- ✓ SiN ball bearings for rotation motion
- ✓ ceramic supporting blocks for transverse positioning in the gap

Field measurements

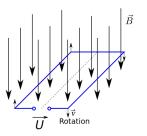
in vacuum @ 4.5K

The measuring probe is designed and built in collaboration with CERN

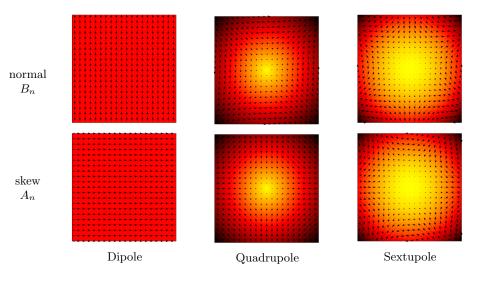
FC == 1

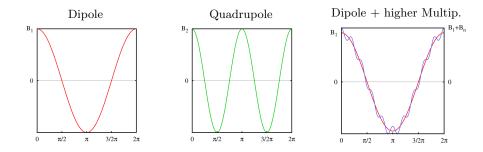

Magnetic flux and induction

Magnetic flux:


$$\Phi = \int \vec{B} \, dA$$

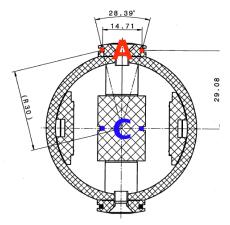
Faraday's law:
$$U_{\rm Ind} = -\frac{d\Phi}{dt}$$


To measure U_{Ind} we have to change either *B* or *A* (or both)


Signal from constant dipole and rotating coil

Multipole expansion

Multipole expansion


Fourier Transformation of measured signal leads to multipole coefficients of magnetic field:

 $\mathbf{C}_n = \mathrm{FT}(\mathrm{Signal})/\mathbf{K}_n$, (\mathbf{K}_n : geometrical sensitivity)

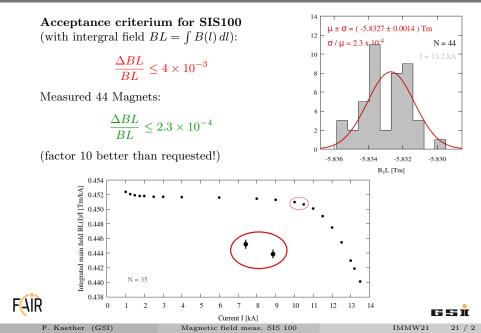
$$\mathbf{B}(\mathbf{z}) = \sum_{n=1}^{\infty} \mathbf{C}_n \left(\frac{\mathbf{z}}{R_{\text{ref}}}\right)^{n-1}, \quad \mathbf{C}_n = B_n + iA_n$$

F. Kaether (GSI)

Compensation method

Sensitivity:

for dipole field: $\mathbf{K}_1(\text{CoilA}) = \mathbf{K}_1(\text{CoilC})$


for higher Multipoles: $\mathbf{K}_{n>1}(\text{CoilC}) = 0$

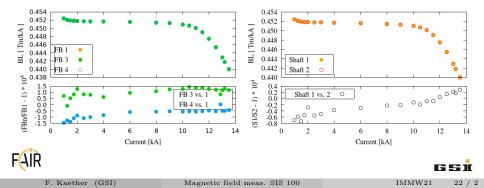
 $\begin{array}{l} \textbf{Compensation method:} \\ \text{subtract Signal(C) from Signal(A)} \\ \rightarrow \text{discrimination of dipole and noise} \\ \rightarrow \text{precise higher harmonics spectrum} \end{array}$

 \rightarrow use signal A for dipole measurement \rightarrow use signal A-C for higher harmonics

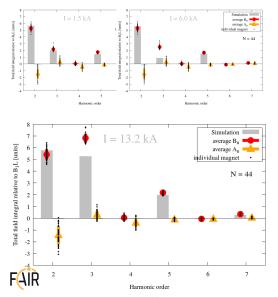
precision $\sim 10^{-5}$

Magnetic length, Transferfunction

Systematics from different Shafts and FeedBoxes


The same magnet was measured

- at 3 different feedboxes
- with 2 different shafts


This includes systematics from

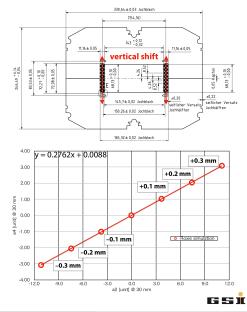
- power supplies
- mechanical installation
- dimensions of rotating coils

- \rightarrow very good reproducibility
- \rightarrow very stable system
- \rightarrow relative errors in the range of units (10⁻⁴).

Harmonics

$$\mathbf{B}(\mathbf{z}) = \sum_{n=1}^{\infty} \mathbf{C}_n \left(\frac{\mathbf{z}}{R_{\text{ref}}}\right)^{n-1}$$
$$\mathbf{C}_n = B_n + iA_n, \quad \mathbf{z} = x + iy$$

- B₂ (normal quadrupole): from end field (expected from magnetic design)
- B₃, B₅ (normal sextu-/decapole) "allowed" harmonics, same symmetry as dipole, can be corrected in the ring
- all other $B_n \approx 0$
- But not A_2 (skew quadrupole)!

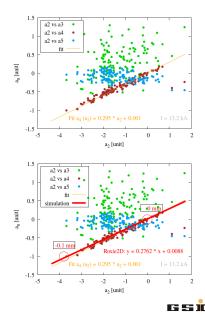

F. Kaether (GSI)

IMMW21 23 / 2

A_2 discussion

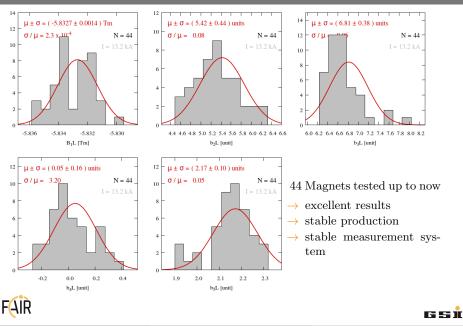
Where is A_2 coming from ?

- Displacement of rotating coil? Ruled out by simulations. No shift or tilt can create A₂.
- A shift of the magnetic coil and/or an asymmetrie in the yoke would cause A₂.
- Confirmation by Roxie2D simulations shows A₄ ~ A₂

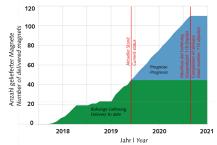


A_2 discussion (part2)

- Measurement results show a linear behaviour $A_4 \sim A_2$.
- Fits perfectly to Roxie2D prediction
- Coil shift / yoke asymmetrie in the order of $\sim 50\,\mu{\rm m}.$
- production steps were reviewed, but no obvious reasons were found.


Is A_2 critical ?

 \rightarrow No! Uncertainties in the alignment of quadrupole magnets in the ring will cause much bigger A_2 .


Statistics

F. Kaether (GSI)

SIS100 Dipole production

- 110 dipoles in total
- 46 dipoles delivered (current rate 1 per week)
- 44 tested
- excellent magnetic field properties
- excellent yoke geometry
- excellent quench behaviour
- problems with process line positions (solved)
- problems with untight feedthroughs (under discussion)

It's on a good track!

C C 1

The last but most important slide: the team at GSI

- Survey & Alignment
- Electrical tests
- Quench detection
- Magnetic field measurements
- Software: DAQ & Analysis

- Cryo operator
- power suppy maintenance
- Transport & Installation
- Quality assurance
- Communication with production

