Magnetic measurement of ESS quadrupole and corrector electro-magnets at Elettra

D. Caiazza, D. Castronovo, A. Gubertini
G. Loda, R. Sauro, D. Vivoda

XXI International Magnetic Measurement Workshop, Grenoble, June 2019

Electromagnetism Group
Elettra - Sincrotrone Trieste S.C.p.A. 34149

Basovizza, Trieste, Italy

Outline

Introduction to Elettra's contribution to ESS
Rotating-coil system for ESS magnets at Elettra

- Design
- Realization
- Calibration
- First measurement results

Elettra

No profit shareholder company, recognized of national interest, estabished in 1987

Elettra (1.994)
third generation light source, 2.4 GeV
28 beam lines

European Spallation Source (ESS)

Currently in construction in Lund (Sweden)

Largest neutron facility ever built
Most powerful proton linear accelerator ($2 \mathrm{GeV}, 5 \mathrm{MW}$)
50% of construction cost covered by Sweden, Norway and Denmark In-Kind Contribution from other countries cover the rest Italian In-Kind Contribution:

Elettra, INFN and CNR
Elettra: magnets, power converters, RF power stations, beam diagnostics instrumentation (wire scanner)
Design, prototyping, production follow-up and magnetic measurement of 213 mag nets out of 353

ESS proton linac magnets

Linac layout

Energy 2.0 GeV
H^{+}ion source
from gas heating

Rotating tungsten target
Neutron generation by spallation

Normal-conducting magnets for different sections DC power
Dedicated power converters

Interested sections

Q5, C5: spoke linac
Q6: Medium- β, High- β, HEBT

C6: Medium- β, High- β, HEBT and
Accelerator-To-Target
Q7: Accelerator-To-Target ramp

Quadrupoles

Water cooled

Correctors

Dual plane, Air cooled C6
C5

Bore $\varnothing 67 \mathrm{~mm}$
Length 70 mm BdL 12 G m GFR 22 mm

Requirements

Quadrupoles Q5, Q6, Q7

Field quality: $\left|\mathbf{c}_{n}\right|<10 \times 10^{-4} \quad \forall n$
Magnetic center vs Mechanical center $\leq 250 \mu \mathrm{~m}$
Magnetic field direction (roll angle)
<1 mrad
Transfer function determination
Measurement of fringe field (\Rightarrow hall probe mapper)

Correctors C5, C6

Field homogeneity: $|\delta(B d I) / B d I|<4 \%$
Mechanical center used for alignment

Solution

Rotating-coil system for magnet characterization and fiducialization

Versatility: easy integration of other systems (e.g. hall sensors, stretched wires)

Marble bench
XY linear stages for horizontal and vertical motion

Rotary motor stage + Encoder Long travel (1 m) linear stage for axial displacement (for upcoming hall probe mapper)

PCB design

Holes for shaft assembly and fiducial markers

Rotating shaft design

PCB is part of the sustaining structure

POM components designed in house and produced by outsourcing

FR-4 (fiberglass + epoxy resin) material bought and

Shaft assembly and installation

Fiducialization tools

4 fiducial markers on magnet top plate (3 for correctors)

Coordinate measuring machine: FARO ${ }^{\circledR}$ arm, 0.029 mm precision, $\pm 0.041 \mathrm{~mm}$ accuracy Magnet frame constructed by probing reference surfaces on polar expansions, on both magnet sides
Magnet is aligned w.r.t. bench frame Shaft rotation axis determined by probing PCB fiducial markers at different angular positions Shaft angle at acquisition start determined by probing the shaft reference plate (determined with $\pm 180 \mu \mathrm{rad}$ uncertainty)

Coil calibration (1/2)

Step 1: coil surface calibration in CERN reference dipole

PCBs shipped to CERN before assembling the shafts
Standard calibration flipping upside down the coils in a known dipole field

$$
-\int_{0}^{t} V_{\mathrm{c}} \mathrm{~d} t=\Phi-(-\Phi)=2 A_{\mathrm{c}} \bar{B}
$$

| D105 coil array
 param. | M.U. | Int.1 | Central | Int.2 | Main |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Design surface
 Calibrated surface | m^{2} | | 2.40251 | | |
| Rel. Difference | - | -1.0×10^{-4} | 0.5×10^{-4} | 0.0×10^{-4} | 0.0×10^{-4} |

Coil calibration (2/2)

Step 2: coil array parallelism, rotation radius
Performed in-situ with unknown quadrupole thanks to linear stages and known coil surfaces

Pure quadrupole case

Taking rotating-coil measurements in two different shaft locations: (a) and (b)
Coil array parallelism from phase differences in the measured feed-down dipole
Then, K_{2} and \mathbf{C}_{2}

$$
\begin{aligned}
& K_{2}=K_{1} \frac{\Delta z}{2} \frac{\Psi_{3}^{(a)}+\Psi_{3}^{(b)}}{\Psi_{2}^{(b)}-\Psi_{2}^{(a)}} \\
& \mathbf{C}_{2}=r_{0} \frac{\Psi_{3}^{(a)}}{K_{2}}=r_{0} \frac{\Psi_{3}^{(b)}}{K_{2}}
\end{aligned}
$$

Generalization to non-pure quadrupole (1/2)

Starting from relation between $\mathbf{C}_{n}^{(a)}$ and $\mathbf{C}_{n}^{(b)} \ldots$

$$
\mathbf{C}_{n}^{(b)}=\sum_{k=n}^{\infty} \mathbf{C}_{k}^{(a)}\binom{k-1}{k-n}\left(\frac{\Delta z}{r_{0}}\right)^{k-n}
$$

... writing for N harmonics ...

$$
\begin{aligned}
& \mathbf{C}_{1}^{(b)}= \mathbf{C}_{1}^{(a)}\binom{0}{0}+\mathbf{C}_{2}^{(a)}\binom{1}{1} \frac{\Delta z}{r_{0}}+\cdots+\mathbf{C}_{N}^{(a)}\binom{N-1}{N-1}\left(\frac{\Delta z}{r_{0}}\right)^{N-1} \\
& \mathbf{C}_{2}^{(b)}= \mathbf{C}_{2}^{(a)}\binom{1}{0}+\mathbf{C}_{3}^{(a)}\binom{2}{1} \frac{\Delta z}{r_{0}}+\cdots+\mathbf{C}_{N}^{(a)}\binom{N-1}{N-2}\left(\frac{\Delta z}{r_{0}}\right)^{N-2} \\
& \vdots \\
& \mathbf{C}_{N-1}^{(b)}= \mathbf{C}_{N-1}^{(a)}\binom{N-2}{0}+\mathbf{C}_{N}^{(a)}\binom{N-1}{1}\left(\frac{\Delta z}{r_{0}}\right) \\
& \mathbf{C}_{N}^{(b)}= \mathbf{C}_{N}^{(a)}\binom{N-1}{0}
\end{aligned}
$$

Generalization to non-pure quadrupole (2/2)

... substituting ...

$$
\mathbf{C}_{n}^{(a)}=r_{0}^{n-1} \frac{\Psi_{n+1}^{(a)}}{K_{n}}, \quad \mathbf{C}_{n}^{(b)}=r_{0}^{n-1} \frac{\Psi_{n+1}^{(b)}}{K_{n}}, \quad n=1, \ldots, N
$$

a system of equations is obtained with the unknowns $\frac{1}{K_{i}}$, coefficient matrix Γ and known term β

$$
\begin{aligned}
& \left\{\begin{array}{ll}
\Psi_{j+2}^{(a)}\binom{j}{-i+j+1}(\Delta z)^{-i+j+1} & j \geq i
\end{array} \quad \beta=\left[\begin{array}{llll}
\frac{\psi_{2}^{(b)}-\Psi_{2}^{(a)}}{K_{1}} & 0 & \cdots & 0
\end{array}\right]^{T},\right. \\
& {[\Gamma]_{i, j}= \begin{cases}-\psi_{i+1}^{(b)}+\psi_{i+1}^{(a)} & j=i-1 .\end{cases} } \\
& v=\Gamma^{-1} \beta, \\
& K_{i}=\frac{1}{v_{i}} \quad i=2, \ldots, N-1
\end{aligned}
$$

Some observations

To exploit bucking, the equation system is written with DFT coefficients of bucked fluxes (i.e. dipole-bucked for quadrupole terms, dipole-quadrupole bucked for higher order ones) \ldots and the unknowns are the equivalent sensitivity factors $K_{n}^{\text {eq }}$ How to choose N ? Look at the condition number κ of Γ matrix ...

\leftarrow Condition number of Γ for different multipole error components ($\Delta z / r_{0}=0.33$)

Large values of κ points out an ill-conditioned system, which may result in amplification in error propagation with inaccurate results

Control, Acquisition and Post-Processing Architecture

Calibration results

Experiment 1: Calibration in

Q7 first-of-series
Shaft displacement $\Delta z=4 \mathrm{~mm}$ Integrated gradient 3.2852T (@ 200 A)

D105 coil array param.	M.U.	Int.1	Central	Int.2	Main
Design surface	m^{2}	2.40251			
Calibrated surface	m^{2}	2.40226	2.40262	2.40252	2.40251
Parallelism	mrad	0.10	-1.20	-0.38	0.00
Design interaxis dist.	mm	20.500	0.000	20.500	41.000
Calibrated interaxis dist.	mm	20.508	0.000	20.508	41.016
Offset from rotation axis	mm		$0.053 \angle-147.11^{\circ}$		

Calibration results in presence of multipole errors (1/2)

The multipole content of the Q7 is poor to test the calibration technique effectiveness in presence of multipole errors
\Rightarrow Experiment 2: introducing an artificial sextupole component, a current absorber was put in parallel to one of the coil windings of the magnet poles

The adsorbing circuit was another magnet, a Q6 (about the same resistance and inductance per coil), such as to adsorb about the 20% of the current

Multipole content of Q7 in Experiment 2

Calibration results in presence of multipole errors $(2 / 2)$

Difference between calibrated rotation radii R_{c}^{\prime} in Exp. 2 and R_{c} in Exp. 1 (with and without multipoles)

Increasing N means taking into account for multipole errors (that is $\left(b_{6}, a_{6}\right)$ in Exp. 2
D105: 16 units of difference for gradient due to $b_{6}(\Delta z=4 \mathrm{~mm})$ D65: 82 units of difference for gradient due to $b_{6}(\Delta z=20 \mathrm{~mm})$

Condition number

Increasing N more than 3 provides no more advantage

Validation against Q6 prototype magnet measured at CERN

Prototype of Q6 magnet, built and measured at CERN

- 50 A
- 96 A
-120 A
- 150 A
- ■ 177 A
- - 185 A
- ${ }^{\text {a } 200 ~ A ~}$

Measurement Std. Deviation on 5 turns ≤ 0.03 units $\max \forall n$

Integrated field gradient agreement 25 units rms, with measurement Std. Dev. ≤ 5 p.p.m. on 5 turns

Summary of results of ESS magnets measured so far

Status report

Measured magnets: 12 Q7, 72 Q6, 55 C6 $\Rightarrow 139$ out of 201
To measure: 23 Q6, 26 Q5, 13 C5
All the quadrupole magnets are largely within the tolerance specification
Sextupole and octupole components ≤ 2 units, remaining components ≤ 1 unit (specification: 10 units $\max \forall n$)
Offset of magnetic center w.r.t. mechanical axis $60 \mu \mathrm{~m}$ for both coordinates (comparable with the fiducialization uncertainty) (specification $250 \mu \mathrm{~m}$)
Main field direction such as fiducialized within $\pm 200 \mu$ rad (specification 1 mrad)

Outlook

Coming soon ... 3D hall-probe mapper as complementary measurements on the first-of-series of each ESS magnet type

Near future: Elettra 2.0: 26 mm aperture, combined function magnets ...

Outlook

Coming soon ... 3D hall-probe mapper as complementary measurements on the first-of-series of each ESS magnet type

Near future: Elettra 2.0: 26 mm aperture, combined function magnets ...

THANKS FOR YOUR ATTENTION!

The authors wish to tank ...
Carlo Petrone, Ricardo B. Mercadillo, Marie Elsa Cervera, CERN
Alessandro Fabris and Rodolfo Laghi, Elettra

