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Introduction to Elettra’s contribution to ESS
Rotating-coil system for ESS magnets at Elettra
- Design
- Realization
- Calibration
- First measurement results
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Quadrupoles Q5, Q6, Q7 Correctors C5, C6
Field quality: |e,| < 10 x 107* Vn Field homogeneity: |6(Bdl)/Bdl| < 4%
Magnetic center vs Mechanical center Mechanical center used for alignment
< 250 pm

Magnetic field direction (roll angle)
< 1mrad

Transfer function determination

Measurement of fringe field (= hall probe

mapper)
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Rotating-coil system for magnet characterization and fiducialization

Versatility: easy integration of other systems (e.g. hall sensors, stretched wires)

Marble bench

XY linear stages for horizontal
and vertical motion

Rotary motor stage + Encoder

Long travel (1 m) linear stage
for axial displacement (for
upcoming hall probe mapper)
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PCB design

Standard array of 5 radial coils for dipole and quadrupole bucking (digital)
10 turns x 16 layers (3 mm thickness)

A, B coil length 850 mm

C, D coil length 110 mm

Holes for shaft assembly and fiducial markers 6/22



Rotating shaft design

PCB is part of the sustaining structure

L110 PCB
(L mount)
FR-4 sheets

Polyoxymethylene
angle brackets

(POM) L850 PCB

Fiducial marker for
CMM probe POM

POM components designed in house and produced by

outsourcing
FR-4 (fiberglass + epoxy resin) material bought and 7/22
machined in house



Shaft assembly and installation

=

Plastic screws (PIC) for tightening

Stage A (left), Stage B (right)
Bellow to transmit rotary motion

Slip rings
Cylindrical bearings

Clinometer support

for calibration of coil
angle at acquisition
start
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ucialization tools

4 fiducial markers on magnet top plate
(3 for correctors)

Coordinate measuring machine: FARO® arm, 0.029 mm precision, +0.041 mm accuracy
Magnet frame constructed by probing reference surfaces on polar expansions, on both
magnet sides

Magnet is aligned w.r.t. bench frame

Shaft rotation axis determined by probing PCB fiducial markers at different angular positions
Shaft angle at acquisition start determined by probing the shaft reference plate (determined
with +180 prad uncertainty)



Coil calibration (1/2)

Step 1: coil surface calibration in CERN reference
dipole

PCBs shipped to CERN before assembling the shafts

Standard calibration flipping upside down the coils in a
known dipole field

D105 coil array

param M.U. Int.1 Central Int.2 Main
Design surface m?2 2.40251

Calibrated surface m?2 2.40226 2.40262 2.40252 2.40251
Rel. Difference - —10x107% 05x107% 00x107% 00x10"%

(M. Buzio, " Fabrication and calibration of search coils”, Cern Accelerator School, 2009.) 10/22



Coil calibration (2/2)

Step 2: coil array parallelism, rotation radius

Performed in-situ with unknown quadrupole thanks to linear stages and known coil surfaces

Pure quadrupole case Complex Plane

Taking rotating-coil measurements in two different
shaft locations: (a) and (b)

Coil array parallelism from phase differences in the
measured feed-down dipole

Then, K2 and C2

_ 3
fe = K v® _ @
2 2
e o Magnet bore
C, = 23 03
2 ro K o K
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Generalization to non-pure quadrupole (1/2)

Starting from relation between c® and c? .
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(P. Arpaia, M. Buzio, O. Koster, G. Severino, S. Russenschuck, " Rotating-coil calibration in a reference quadrupole, considering roll angle misalignment and high-order 12/22
harmonics”, Measurement, 2016.)



Generalization to non-pure quadrupole (2/2)

.. substituting ...

B \Uﬁa) B wE)b)
Cl=r'55  C=r % n=Ll..N

a system of equations is obtained with the unknowns % coefficient matrix I and known term 3
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Some observations

To exploit bucking, the equation system is written with DFT coefficients of bucked fluxes
(i.e. dipole-bucked for quadrupole terms, dipole-quadrupole bucked for higher order ones)
. and the unknowns are the equivalent sensitivity factors K39

Look at the condition number x of I matrix ...
I

b3
b4 0 .. . .
bs < Condition number of " for different multipole

error components (Az/ry = 0.33)

Large values of k points out an ill-conditioned

system, which may result in amplification in error
| | | | propagation with inaccurate results

units
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Calibration results

Experiment 1: Calibration in D105 coil array param. M.U. Int.1 Central Int.2 Main
Q7 first-of-series Design surface m? 2.40251
Calibrated surface m? 2.40226 2.40262 2.40252 2.40251
Shaft displacement Az = 4mm Parallelism mrad 0.10 —1.20 —0.38 0.00
Design interaxis dist. mm 20.500 0.000 20.500 41.000
Integrated gradient 3.2852T (@ Calibrated interaxis dist. ~ mm  20.508 ~ 0.000  20.508  41.016
Offset from rotation axis mm 0.053 /—147.11°

200A)
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presence of multipole errors (1/2)

The multipole content of the Q7 is poor to test the calibration technique effectiveness in
presence of multipole errors

= Experiment 2: introducing an artificial sextupole component, a current absorber was put in
parallel to one of the coil windings of the magnet poles

The adsorbing circuit was another magnet, a Q6 (about the same resistance and inductance
per coil), such as to adsorb about the 20 % of the current

Multipole content of Q7 in Experiment 2
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Calibration results in presence of multipole errors (2/2)

Difference between calibrated rotation radii R. in Exp.2 and R. in Exp.1 (with and without multipoles)

D105 Shaft D65 Shaft
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Validation against Q6 prototype magnet measured at CERN
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Summary of results of ESS magnets measured so far

Status report

Measured magnets: 12 Q7, 72 Q6, 55 C6 = 139 out of 201
To measure: 23 Q6, 26 Q5, 13 C5
All the quadrupole magnets are largely within the tolerance specification

Sextupole and octupole components < 2 units, remaining components < 1 unit
(specification: 10 units max Vn)

Offset of magnetic center w.r.t. mechanical axis 60 pm for both coordinates (comparable
with the fiducialization uncertainty) (specification 250 ym)

Main field direction such as fiducialized within +200 prad (specification 1 mrad)
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Coming soon ... 3D hall-probe mapper as complementary measurements on the first-of-series
of each ESS magnet type

Near future: Elettra 2.0: 26 mm aperture, combined function magnets ...
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Coming soon ... 3D hall-probe mapper as complementary measurements on the first-of-series
of each ESS magnet type

Near future: Elettra 2.0: 26 mm aperture, combined function magnets ...
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The authors wish to tank ...
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