International Magnetic Measurement Workshop

Magnetic Alignment of magnets for CHESS-U upgrade

Alexander Temnykh
Cornell High Energy Synchrotron Source (CHESS)
abt6@cornell.edu

Outline

- Introduction:
- CHESS-U upgrade project general information
- New Magnets
- Instrumentation
- Vibrating Wire setup
- Hall Probe setup
- Magnetic alignment procedure
- Coordinate System establishing
- Vibrating Wire position in respect to girder fiducials
- Hall probe position in respect to Vibrating Wire
- Quadrupole Magnets magnetic survey and alignment
- Dipole-Quadrupole (DQ) magnetic survey and alignment
- Conclusion and Acknowledge

CHESS-U upgrade: general information

Before:
$\mathrm{E}=5.3 \mathrm{GeV}$; two (e+/e-) beams; ex = 140 nm-rad

X-ray beam lines in two directions

May 29 2018, Single beam operation

After:
$\mathrm{E}=6 \mathrm{GeV}$; One (e+) beam; $\mathrm{ex}=29$ nm-rad

All x-ray beam lines in one directions

June 9 2019, Single beam operation

CHESS-U upgrade: new magnets

1. Dipole-Quadrulole (DQ) (12)
2. DQ dipole trims (24)
3. Quadrupole Magnets (24)
4. Vertical Steering (12)
5. Skew Quads (Panofsky style) (12)
6. CHESS Compact Undulators (CCU) (8)

CHESS-U girders, Sept 2018

Cornell Compact Undulators (by KYMA)

Instrumentation

Magnetic field sensors: 3-axis Hall Probe, Vibrating Wire

Vibrating Wire setup:

- 0.1 mm Copper Beryllium wire, length $\sim 5.5 \mathrm{~m}$,
- f1~21 Hz, Sag ~0.695mm
- Wire position sensor assemblies on both wire ends. Assemblies are mounted on platform moving with stages

Hall Probe Setup (SENIS F3A Magnetic Field Transducer):

- High spatial resolution (By: $0.03 \times 0.005 \times 0.03 \mathrm{~mm}^{3} ; B x$ and Bz: $0.15 \times 0.01 \times 0.15 \mathrm{~mm}^{3}$)
- High angular accuracy (orthogonality error less than 0.1°)
- HP was Mount on Newport stages providing 3D positioning with $\sim 0.001 \mathrm{~mm}$ accuracy.
- Was calibrated against PT2025 NMR Tesla-meter.

Instrumentation: Hall Probe Characterization

Transducer Calibration with NMR Tesla meter

Hall Sensor Volatege calibration against NMR_Probe Metrolab PT 2025 03/14/19 Annex,CHESS

Field Components de-coupling correction
Magnet with flat geometry and flat magnetic field

RefMag_z-scan-031319(1) 4:24:07 PM 3/16/2019

Bx before and after introducing de-coupling correction.

0.042 mrad (0.0024deg)/div

$\mathrm{dBx} / \mathrm{dBy}=0.00294+-0.00007$
Presidion ~ 0.07 mrad (0.004 deg)

Magnetic Alignment procedure: sequence

1. Align girder (fiducials) parallel to Hall Probe Path
2. Establish Vibrating Wire position in respect to girder fiducials
3. Establish Hall Probe position in respect to wire
4. Place wire on beam axis on Q1/Q2 side and align Q1/Q2 magnetic axis to the wire
5. Energize DQ and minimize yaw, pitch, vertical offset and roll.
6. Take DQ 2D field map, simulate beam trajectory, find field gradient integral along trajectory ($2-3$ iterations) and determine nominal current.
7. At nominal current take 2D field map (all 3 components), simulate beam trajectory and adjust DQ position to place this trajectory on desired location.
8. Survey and record position of the magnets on the girder with optical instruments.

Establish Vibrating Wire position in respect to girder fiducials

Wire is in contact with fiducial (dowel pin)

Vibrating Wire position sensors mounted on platform

Two consecutive measurements

	Pin touching coordinate [mm]		
Measurement \#	Try \#1	Try \#2	Try \#3
1	-80.985	-80.981	-80.987
2	-80.985	-80.982	-80.987
3	-80.986	-80.982	-80.986
4	-80.984	-80.981	-80.986
5	-80.985	-80.981	-80.986
<x>	-80.985	-80.9814	-80.9864
std(x) [mm]	0.00071	0.00055	0.00055
std (try-to-try) $[\mathrm{mm}]$	0.0026		

Between each try, fiducial pin was removed and reinstalled.

Establish
Hall probe position in respect to Vibrating Wire

*Wire sag should be taking into account

Magnetic Alignment: Quadrupole magnets alignment

Stage \#2

1) Put VW on desire position of Q1 magnetic axis and roughly align Q1 in respect to wire
2) With "zero" field in Q1, take VW background measurement
3) With 25A ($\sim 20 \%$ of nominal) current make horizontal and vertical scans with VW to find location of magnetic axis, see plots below.
4) Move quad to put magnetic axis on desire position and check result.

Example			
	After rough alignment [mm]	Desired position	distance to move
xc	$64.631+-0.001$	64.210	-0.421
yc* *	$-10.886+-0.001$	-10.330	0.556

yc^{*} is the wire ends position.
Wire sag should be taking into account when it is translating to quad location

Magnetic Alignment: DQ "yaw" correction

1. Energize $D Q$ with nominal (approximately) current $\sim 690 \mathrm{~A}$
2. Measure field along straight line along magnet (z-scan)
3. Find difference between center of gravity of the field distribution (z_COG) and location of maximum (z_peak).
4. Calculate "yaw", move magnet and repeat 2.

$z_{\text {peak }}$ - field maximum location;
$z_{\text {CoG }}$ - Centre Of Gravity location
$z_{\text {peak }}=\theta_{\text {yaw }} R ; R=31.42 \mathrm{~m}$
$z_{C o G}=\theta_{\text {yaw }} \frac{G l_{m}^{3}}{12 I} ; I=B_{0} l_{m}-\frac{G l_{m}^{3}}{24 R}$
$d z=z_{\text {peak }}-z_{\text {CoG }}=\theta_{\text {yaw }}\left(R-\frac{G l_{m}^{3}}{12 I}\right)$
$\theta_{\text {yaw }}=\frac{d z}{\left(R-\frac{G l_{m}^{3}}{12 I}\right)}$
1) $d z=18.16 \pm 0.25 \mathrm{~mm} ; \theta_{\text {yaw }}=0.736 \pm 0.010 \mathrm{mrad}$
2) $d z=-0.40 \pm 0.25 \mathrm{~mm} ; \theta_{\text {yaw }}=-0.016 \pm 0.010 \mathrm{mrad}$

Magnetic Alignment: DQ vertical offset and pitch correction

Beam Trajectory ($\mathrm{R}=31.42 \mathrm{~m}$),

- DQ poles follow beam trajectory

Hall Probe Trajectory

1. Nominal (~693A) current
2. Z- scan => analyze horizontal field component (Bx)
3. Move magnet, repeat step 2.

Cornell High Energy Synchrotron Source

$$
B_{x}\left(z, \theta_{p i t c h}\right)=G\left[y_{o f f}+\theta_{\text {pitch }} \times(z-\tilde{z})\right] ;
$$

$G=8 \mathrm{~T} / \mathrm{m} ; y_{o f f}-$ vertical offset from axis

Before alignment:

$$
y_{o f f}=0.1868 \pm 0.0005 \mathrm{~mm} ; \theta_{\text {pitch }}=0.0558 \pm 0.0008 \mathrm{mrad}
$$ After:

$$
y_{o f f}=0.0196 \pm 0.0004 \mathrm{~mm} ; \theta_{\text {pitch }}=-0.0057 \pm 0.0007 \mathrm{mrad}
$$

Magnetic Alignment: DQ "roll" correction

Magnetic Alignment: DQ horizontal positioning

DQ-11 2D Field Map, I_mag = 696.34A

Magnetic Alignment: DQ horizontal positioning

Two constrains:

1) $\theta_{\text {nom }}=74.799 \mathrm{mrad}-$ bending angle
2) $\int G d l=20.57 \mathrm{~T}-\mathrm{m} / \mathrm{m}$ - field gradient integral along beam trajectory

After we found trajectory with nominal bending angle, we can find field gradient integral along this trajectory and more, see next slide.

Magnetic Alignment: DQ horizontal positioning

Beam commission confirmed magnets alignment

Top-off operation at $50 \mathrm{~mA}, 6 \mathrm{Gev}$

In addition:

8 CHESS Compact Undulators have been installed and put into operation

First light from the undulators

Closed Orbit

O2-May-19 16:59:39 CHESS-U_6000M2:-2181120 Dat: butns. 1298709
Ref: NONE CESR Set: 156720
Species: Positron Species: Positron
RMS $=2.898$ Average $=-0.282$

Areas with new magnet structure

Conclusion and Acknowledge

- To speed up the process of the magnet alignment on girders, we used Vibrating Wire and Hall Probe magnetic field measurement techniques and aligned magnetic axis of the mounted magnets. This approach appeared to be quite practical and efficient.
- The precision of the alignment was confirmed with beam measurement.
- The work has been supported by NSF award DMR-1332208

