

International Magnetic Measurement Workshop

24th - 28th June 2019

Magnetic Alignment of magnets for CHESS-U upgrade

Alexander Temnykh Cornell High Energy Synchrotron Source (CHESS)

abt6@cornell.edu

Outline

- Introduction:
 - CHESS-U upgrade project general information
 - New Magnets
- Instrumentation
 - Vibrating Wire setup
 - Hall Probe setup
- Magnetic alignment procedure
 - Coordinate System establishing
 - Vibrating Wire position in respect to girder fiducials
 - Hall probe position in respect to Vibrating Wire
 - Quadrupole Magnets *magnetic* survey and alignment
 - Dipole-Quadrupole (DQ) *magnetic* survey and alignment
- Conclusion and Acknowledge

CHESS-U upgrade: general information

Before:

E=5.3 GeV; two (e+/e-) beams; ex = 140 nm-rad

X-ray beam lines in two directions

May 29 2018, Single beam operation

After: E=6 GeV; One (e+) beam; ex = 29 nm-rad

All x-ray beam lines in one directions

June 9 2019, Single beam operation

CHESS-U upgrade: new magnets

- 1. Dipole-Quadrulole (DQ) (12)
- 2. DQ dipole trims (24)
- 3. Quadrupole Magnets (24)
- 4. Vertical Steering (12)
- 5. Skew Quads (Panofsky style) (12)
- 6. CHESS Compact Undulators (CCU) (8)

CHESS-U girders, Sept 2018

Cornell Compact Undulators (by KYMA)

Instrumentation

Vibrating Wire setup:

- 0.1mm Copper Beryllium wire, length ~ 5.5m,
- f1 ~ 21 Hz, Sag ~ 0.695mm
- Wire position sensor assemblies on both wire ends. Assemblies are mounted on platform moving with stages

Hall Probe Setup (SENIS F3A Magnetic Field Transducer):

- High spatial resolution (By: 0.03 x 0.005 x 0.03mm³; Bx and Bz: 0.15 x 0.01 x 0.15 mm³)
- High angular accuracy (orthogonality error less than 0.1°)
- HP was Mount on Newport stages providing 3D positioning with ~0.001mm accuracy.
- Was calibrated against PT2025 NMR Tesla-meter.

Instrumentation: Hall Probe Characterization

By [G]

Bx before and after introducing de-coupling correction.

0.042 mrad (0.0024deg)/div

dBx/dBy = 0.00294+-0.00007 Presidion ~ 0.07 mrad (0.004 deg)

Magnetic Alignment procedure: sequence

- 1. Align girder (fiducials) parallel to Hall Probe Path
- 2. Establish Vibrating Wire position in respect to girder fiducials
- 3. Establish Hall Probe position in respect to wire
- 4. Place wire on beam axis on Q1/Q2 side and align Q1/Q2 magnetic axis to the wire
- 5. Energize DQ and minimize yaw, pitch, vertical offset and roll.
- 6. Take DQ 2D field map, simulate beam trajectory, find field gradient integral along trajectory (2-3 iterations) and determine nominal current.
- 7. At nominal current take 2D field map (all 3 components), simulate beam trajectory and adjust DQ position to place this trajectory on desired location.
- 8. Survey and record position of the magnets on the girder with optical instruments.

Establish Vibrating Wire position in respect to girder fiducials

Wire is in contact with fiducial (dowel pin)

Two consecutive measurements

Vibrating Wire position sensors mounted on platform

	Pin touching coordinate [mm]		
Measurement #	Try #1	Try #2	Try #3
1	-80.985	-80.981	-80.987
2	-80.985	-80.982	-80.987
3	-80.986	-80.982	-80.986
4	-80.984	-80.981	-80.986
5	-80.985	-80.981	-80.986
<x></x>	-80.985	-80.9814	-80.9864
std(x) [mm]	0.00071	0.00055	0.00055
std (try-to-try) [mm]	0.0026		

Between each try, fiducial pin was removed and reinstalled.

Establish

Hall probe position in respect to Vibrating Wire

Hall Probe

Vertical Scan

	yc* [mm]	yc error [mm]
Vibrating Wire CS	-10.884	+-0.00098
Hall Probe CS	10.429	+-0.00051

*Wire sag should be taking into account

Horizontal Scan Reference PM quad x-scan with Reference PM guad x-scan with Vibrating Wire

	xc [mm]	xc error [mm]
Vibrating Wire CS	64.623	+-0.00058
Hall Probe CS	65.878	+-0.00075

Magnetic Alignment: Quadrupole magnets alignment

- 2) With "zero" field in Q1, take VW background measurement
- 3) With 25A (~20% of nominal) current make horizontal and vertical scans with VW to find location of magnetic axis, see plots below.
- 4) Move quad to put magnetic axis on desire position and check result.

	1				
	After rough alignment [mm]	Desired position	distance to move		
XC	64.631+-0.001	64.210	-0.421		
yc*	-10.886+-0.001	-10.330	0.556		

Example

yc* is the wire ends position. Wire sag should be taking into account when it is translating to quad location

Cornell University Cornell High Energy Synchrotron Source

Magnetic Alignment: DQ "yaw" correction

- 1. Energize DQ with nominal (approximately) current ~690A
- 2. Measure field along straight line along magnet (z-scan)
- 3. Find difference between center of gravity of the field distribution (z_COG) and location of maximum (z_peak).
- 4. Calculate "yaw", move magnet and repeat 2.

1) $dz = 18.16 \pm 0.25 \text{ mm}; \theta_{yaw} = 0.736 \pm 0.010 \text{ mrad}$ 2) $dz = -0.40 \pm 0.25 \text{ mm}; \theta_{yaw} = -0.016 \pm 0.010 \text{ mrad}$

- $B_{y}(z,\theta_{yaw}) = B_{0} + G\left[\frac{z^{2}}{2R} + \theta_{yaw} \times z\right];$
- $z_{peak} field$ maximum location; $z_{CoG} - Centre \ Of \ Gravity \ location$

$$z_{peak} = \theta_{yaw} R; R = 31.42m$$

$$z_{CoG} = \theta_{yaw} \frac{Gl_m^3}{12I}; I = B_0 l_m - \frac{Gl_m^3}{24R}$$

$$dz = z_{peak} - z_{CoG} = \theta_{yaw} \left(R - \frac{Gl_m^3}{12I} \right)$$

$$\theta_{yaw} = \frac{dz}{\left(R - \frac{Gl_m^3}{12I}\right)}$$

Cornell University Cornell High Energy Synchrotron Source

Magnetic Alignment: DQ vertical offset and pitch correction

Beam Trajectory (R=31.42 m), DQ poles follow beam trajectory Hall Probe Trajectory

- 1. Nominal (~693A) current
- 2. Z- scan => analyze horizontal field component (Bx)
- 3. Move magnet, repeat step 2.

Cornell High Energy Synchrotron Source

Cornell University

$$B_x(z,\theta_{pitch}) = G[y_{off} + \theta_{pitch} \times (z - \tilde{z})];$$

G = 8T/m; y_{off} - vertical offset from axis

Before alignment: $y_{off} = 0.1868 \pm 0.0005 \ mm; \ \theta_{pitch} = 0.0558 \pm 0.0008 \ mrad$ After: $y_{off} = 0.0196 \pm 0.0004 \ mm; \ \theta_{pitch} = -0.0057 \pm 0.0007 \ mrad$

2019 IMMW 21, June 24-28, Grenoble

Magnetic Alignment: DQ "roll" correction

Magnetic Alignment: DQ horizontal positioning

DQ-11 2D Field Map, I_mag = 696.34A

Magnetic Alignment: DQ horizontal positioning

8000 G

Two constrains:

- $\theta_{nom} = 74.799 \, mrad bending angle$ 1)
- $\int Gdl = 20.57 T m/m$ field gradient 2) integral along beam trajectory

After we found trajectory with nominal bending angle, we can find field gradient integral along this trajectory and more, see next slide.

Cornell University Cornell High Energy Synchrotron Source

Magnetic Alignment: DQ horizontal positioning

Cornell High Energy Synchrotron Source

2019 IMMW 21, June 24-28, Grenoble

Beam commission confirmed magnets alignment

Top-off operation at 50mA, 6Gev

In addition:

8 CHESS Compact Undulators have been installed and put into operation

First light from the undulators

Horizontal Orbit (mm) [Data] *Limited* 02-May-19 16:59:39 CHESS-U_6000MEV_20181120 Dat: butns 1298709 Ref: NONE CESR Set: 156720 Species: Positron RMS = 2.898 Average = -0.28243 静语 Vertical Orbit (mm) [Data] RMS = 1.537 Average = 0.08720 50 60 70 120 130 140 150 10 4D 80 90 100

Closed Orbit

Areas with new magnet structure

Conclusion and Acknowledge

- To speed up the process of the magnet alignment on girders, we used Vibrating Wire and Hall Probe magnetic field measurement techniques and aligned magnetic axis of the mounted magnets. This approach appeared to be quite practical and efficient.
- The precision of the alignment was confirmed with beam measurement.
- The work has been supported by NSF award DMR-1332208

