

# High Field Magnetic Field Measurement of MQXFA Magnets – for High Luminosity Upgrade at CERN – US DOE AUP Program

Honghai Song Superconducting Magnet Division, BNL 4/26/2019



#### **A CENTURY OF SERVICE**









## Acknowledgment

- Collaborators at BNL, LBNL, FNAL, CERN, including G. Ambrosio, K. Amm, M. Anerella, D. W. Cheng, G. Chlachidze, J. DiMarco, S. Feher, P. Ferracin, S. Izquierdo Bermudez, A. Jain, P. Joshi, M. Marchevsky, J. Muratore, H. Pan, S. Prestemon, G. Sabbi, J. Schmalzle, E. Todesco, P. Wanderer, X. Wang, M. Yu and many others.
- This work was supported in part by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, through the U.S. LHC Accelerator Research Program, and in part by the High Luminosity LHC project at CERN.

CENTURY OF SERVICE

🛟 Fermilab



## Outline

- Introduction
- Preparation for high field magnetic measurement of MQXFA Quads
- AP2 measurement results
- AP1b (one of the 4 coils has been replaced due to heater insulation issue)
- Summary







# MQXFA Magnets and Magnetic Field Measurement for both Prototype and Production

- Magnetic field measurement for MQXFAP magnet
  - Monitor quality of the magnet production process
  - Ensure magnetic fields meets functional requirements and acceptance criteria.

| AUP MQXFA magnet pa | rameter |
|---------------------|---------|
|---------------------|---------|





| Parameters                   | value              |
|------------------------------|--------------------|
| T <sub>op</sub>              | 1.9 [ K ]          |
| Reference radius             | 50 [mm]            |
| Coil magnetic length         | 4.2 [m]            |
| Total length with end plates | 5 m (norm)         |
| Conductor                    | Nb <sub>3</sub> Sn |









## **Magnetic Measurement Probe and Calibration**

HT-Basic MM readout

Calibration Quad

LabVIEW based vertical transport

PCB

**Rotating Coil** 

ERG



In PCB analog bucked configuration, there are 3 signals per circuit: UnBucked (UB), Dipole Bucked (DB) and Dipole-Quad Bucked (DQB).



- Long probe is 220mm, short is 110mm, on single board
- 5 'Tracks', 12 loops/track, 2 layers (→ 24 turns/track)
- Width is 18.55mm/track.
- Board length 425mm, width 95mm, thickness 4.57mm

#### Designed By J. DiMarco, Fermi Lab Has been used in short magnet measurement

| # | Signals | R       |                   |
|---|---------|---------|-------------------|
| 1 | UB_220  | 63.2 Ω  |                   |
| 2 | DB_220  | 120.6 Ω | Dara wiraa an tha |
| 3 | DQB_220 | 235.0 Ω | bale wires on the |
| 4 | UB_110  | 34.7 Ω  | mating connector  |
| 5 | DB_110  | 65.0 Ω  |                   |
| 6 | DQB_110 | 125.4 Ω | YEARS OF          |
|   |         | 10      | DISCOVERY         |

A CENTURY OF SERVICE

## **Vertical Transport System for ZSCAN along Magnet Axis**



#### **Vertical Transport Linear Motion Control and Emergency System**



- Developed LabVIEW based vertical transport motion system
- Survey along the Z-axis completed, three runs, Run\_1a, 2a/2b.
- Measured discrepancy is less than ±0.6 mm, good repeatability.









# Hardware and software programming for motion control and logic control





#### **Preparation for Magnetic Field Measurement - Plan**

- Warm MM prior to quench tests +/-15 A (averaged)
- Most quenches are in or close to magnet ends. All coils participated in training quenches.
- Magnet reached 15 kA in 9 quenches, and showed detraining after quench 11.
- Cold MM after quench 13,
  - ZSCAN
    - Start with pre-cycle
    - 960A (injection), 6kA, 10 kA
  - ISCAN
    - Stair-step, (DC Loop), up to 10 kA (pre-cycle)
      - •Did try 13 kA, but quenched at 4.2 K, magnet back to quench training
- Further tests and analyses are in progress.

NATIONAL LABORATOR







### Warm Measurement of MQXFAP2, Averaged +/-15 A - BNL Probe 220 (10/15) vs LBNL Probe 110 Data (6/15)



- Low current T.F. = 8.86 T/m/kA (Design)
- Reasonable agreement in T.F. between measured and design



Courtesy of X. Wang



#### More Comparison in Multipole Coefficients between LBNL (Probe 110) and BNL (Probe 220) Warm Measurement



Good Agreement
 between BNL and
 LBNL Warm MM
 Results

İbl + bnl +

2 2.5

ibl 🔶 bni 🔶

2

1.5

- The Vertical MM
  System are Ready for
  Cold MM
- Probe 110 seems to have better accuracy
- More data on Probe 220 and 110 in cold MM



## Preliminary Cold vs Warm Measurement, **Transfer Function** (Probe 220 Data)



#### ZSCAN,

- 42 Z positions,
- Centered by Magnet Center and Probe 220 Center
- Slight decrease at higher current  $\rightarrow$  iron saturation



#### ISCAN (Stair-step, DC Loop)

- 24 currents,
- Ramped from *I*<sub>ini</sub> 960A, up to 10 kA, (missed 3kA)

A CENTURY OF SERVICE

Hysteresis → persistent current YEARS OF

# Cold vs Warm Magnetic Measurement: **Harmonics** (Probe 220 Data)



# Cold vs Warm Magnetic Measurement: **Harmonics** (Probe 220 Data)



# Cold vs Warm Magnetic Measurement: **Harmonics** (Probe 220 vs Probe 110) – 220 mm apart



- Probe 220 is ~220 mm
   higher than
   Probe 110
- Good agreement between Probe 220 and 110 data.

YEARS OF

**IRY OF SERVICE** 

SCOVER

### Cold vs Warm Magnetic Measurement: Harmonics (Probe 220 vs Probe 110) – 220 mm apart



- Allowed b6
  - Good agreement between Probe 220 and 110 data.

### Straight-Section Averaged Field and r.m.s. - Probe 220 Cold and Warm Harmonics Correlation

|         | b     | 3    | b     | 4    | b     | 5    | b                  | 6    |  |
|---------|-------|------|-------|------|-------|------|--------------------|------|--|
| Current | mean  | rms  | mean  | rms  | mean  | rms  | Mean               | Rms  |  |
| 15A     | -1.23 | 1.96 | -1.12 | 1.25 | -0.46 | 0.95 | <mark>-5.90</mark> | 1.12 |  |
| 960A    | -0.92 | 2.02 | -0.91 | 1.30 | -1.38 | 1.02 | -17.03             | 1.28 |  |
| 6kA     | -0.67 | 2.07 | -1.11 | 1.28 | -1.12 | 1.06 | -7.37              | 1.28 |  |
| 10kA    | -0.87 | 2.09 | -1.25 | 1.33 | -0.99 | 1.06 | <mark>-4.18</mark> | 1.26 |  |

NATIONAL LABORATOR

|         | а                 | 3    | а    | 4    | а    | 5    | а    | 6    |  |
|---------|-------------------|------|------|------|------|------|------|------|--|
| Current | mean              | rms  | mean | rms  | mean | rms  | mean | rms  |  |
| 15A     | <mark>4.10</mark> | 1.77 | 2.61 | 1.69 | 1.94 | 0.78 | 0.45 | 0.49 |  |
| 960A    | 4.19              | 1.77 | 3.07 | 1.83 | 1.75 | 0.82 | 0.47 | 0.49 |  |
| 6kA     | 2.79              | 1.82 | 2.24 | 1.96 | 1.35 | 0.83 | 0.40 | 0.52 |  |
| 10kA    | <mark>3.17</mark> | 1.85 | 2.54 | 1.95 | 1.48 | 0.85 | 0.40 | 0.52 |  |







## **Measured harmonics vs requirement**



Normal harmonics at high field of 10 kA compared to expected field quality requirements (as determined from achievable 30 µm fabrication tolerances).

A decision has been recently made and shall be implemented for the future magnets through a change of 0.125 mm shims in the pole and in the midplane.







## **MQXFAP2 Center offsets – dipole centering**



A CENTURY OF SERVICE

- Y\_offset (up to -12 mm) is more significant than X\_offset (1-2 mm) only during thermal cooling.
- Small currents (15A 100A) does not change Y\_offset much thermal shrinkage is primary cause.





# Found Offset (~15mm) between Magnet Center and Probe Center



- ZSCAN at 960 A, the inflection in X\_offset is more observable than Y\_offset
- At higher current of 6 kA, the Y\_offset(Z) line becomes nonlinear at around Z = 1750 mm from HOME
- At 10 kA, the Y\_offset(Z) becomes more curved, and the inflection point is Z = 1750 mm from HOME
  TO YEARS OF







### Warm MM before and after the cool-down - Measured Center Offsets (X and Y) – Probe 220



First observed by M. Anerella, P. Wanderer, H. Song







#### Harmonics bn Analysis (two WM comparison before and after the cooling



**A CENTURY OF SERVICE** 





## **MQXF 1b magnet**



April 20 Saturday Morning



Getting ready For Magnetic Field Measurement







## **Magnetic Field Measurement**

- Three sets of measurement have been completed
  - Room temperature, +/- 15A, April 20,
  - T\_lead = 200K, T\_non-lead = 100 K, April 21
    - Observed by P Joshi the wrap wire for Aluminum crack detection broken
    - Emergency call on Sunday, Asked to check the magnetic field center offsets
    - Strain gauges data was analyzed in parallel
  - T = 4.2 K, April 22 no large offsets measured unlikely any crack.



## **On-going Quench Training on MQXF AP1b**



## **Measurement - ongoing**

#### First ZSCAN at 16500 A achieved yesterday! More measurements to come....

| index                                                                      | zpos                                                                                                                                        | current                                                                             | ramprate                                                                                 | wait                                                                                                                                                                                                                                           |                                                                                                                                            |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                          | 1915.71                                                                                                                                     | 100                                                                                 | 14                                                                                       | 60                                                                                                                                                                                                                                             | measure                                                                                                                                    |
| 2                                                                          | 1915.71                                                                                                                                     | 105                                                                                 | 14                                                                                       | 60                                                                                                                                                                                                                                             | measure                                                                                                                                    |
| 3                                                                          | 1915.71                                                                                                                                     | 110                                                                                 | 14                                                                                       | 60                                                                                                                                                                                                                                             | measure                                                                                                                                    |
| 4                                                                          | 1915.71                                                                                                                                     | 979                                                                                 | 14                                                                                       | 1000                                                                                                                                                                                                                                           | measure                                                                                                                                    |
| 5                                                                          | 1915.71                                                                                                                                     | 1520                                                                                | 14                                                                                       | 60                                                                                                                                                                                                                                             | measure                                                                                                                                    |
| 6                                                                          | 1915.71                                                                                                                                     | 2022                                                                                | 14                                                                                       | 60                                                                                                                                                                                                                                             | measure                                                                                                                                    |
| 7                                                                          | 1915.71                                                                                                                                     | 2524                                                                                | 14                                                                                       | 60                                                                                                                                                                                                                                             | measure                                                                                                                                    |
| 8                                                                          | 1915.71                                                                                                                                     | 3026                                                                                | 14                                                                                       | 60                                                                                                                                                                                                                                             | measure                                                                                                                                    |
| 9                                                                          | 1915.71                                                                                                                                     | 4029                                                                                | 14                                                                                       | 60                                                                                                                                                                                                                                             | measure                                                                                                                                    |
| 10                                                                         | 1915.71                                                                                                                                     | 5033                                                                                | 14                                                                                       | 60                                                                                                                                                                                                                                             | measure                                                                                                                                    |
| 11                                                                         | 1915.71                                                                                                                                     | 6036                                                                                | 14                                                                                       | 60                                                                                                                                                                                                                                             | measure                                                                                                                                    |
| 12                                                                         | 1915.71                                                                                                                                     | 7040                                                                                | 14                                                                                       | 60                                                                                                                                                                                                                                             | measure                                                                                                                                    |
| 13 г                                                                       | 1015 71                                                                                                                                     | 0040                                                                                | 11                                                                                       | 60                                                                                                                                                                                                                                             | magaura                                                                                                                                    |
|                                                                            |                                                                                                                                             |                                                                                     |                                                                                          |                                                                                                                                                                                                                                                | -                                                                                                                                          |
| 14                                                                         | ISCAN –                                                                                                                                     | DC Loor                                                                             | os – Stair                                                                               | steps at                                                                                                                                                                                                                                       | Center                                                                                                                                     |
| 14<br>15                                                                   | ISCAN –                                                                                                                                     | DC Loop                                                                             | os – Stair                                                                               | steps at                                                                                                                                                                                                                                       | Center                                                                                                                                     |
| 14<br>15<br>16                                                             | <b>ISCAN</b> – 1915.71                                                                                                                      | 9047                                                                                | $\frac{14}{14}$ s – Stair                                                                | steps at                                                                                                                                                                                                                                       | Center<br>measure                                                                                                                          |
| 14<br>15 [<br>16<br>17                                                     | ISCAN –<br>1915.71<br>1915.71                                                                                                               | 9047<br>8043                                                                        | os – Stair                                                                               | steps at                                                                                                                                                                                                                                       | Center<br>measure<br>measure                                                                                                               |
| 14<br>15<br>16<br>17<br>18                                                 | ISCAN –<br>1915.71<br>1915.71<br>1915.71                                                                                                    | 9047<br>8043<br>7040                                                                | os – Stair<br>14<br>14<br>14                                                             | 60<br>60<br>60                                                                                                                                                                                                                                 | Center<br>measure<br>measure<br>measure                                                                                                    |
| 14<br>15<br>16<br>17<br>18<br>19                                           | ISCAN –<br>1915.71<br>1915.71<br>1915.71<br>1915.71<br>1915.71                                                                              | 9047<br>8043<br>7040<br>6036                                                        | os – Stair<br>14<br>14<br>14<br>14                                                       | 60<br>60<br>60<br>60                                                                                                                                                                                                                           | Center<br>measure<br>measure<br>measure<br>measure                                                                                         |
| 14<br>15<br>16<br>17<br>18<br>19<br>20                                     | ISCAN –<br>1915.71<br>1915.71<br>1915.71<br>1915.71<br>1915.71                                                                              | 9047<br>8043<br>7040<br>6036<br>5033                                                | os – Stair<br>14<br>14<br>14<br>14<br>14<br>14                                           | steps at<br>60<br>60<br>60<br>60<br>60<br>60                                                                                                                                                                                                   | Center<br>measure<br>measure<br>measure<br>measure<br>measure                                                                              |
| 14<br>15<br>16<br>17<br>18<br>19<br>20<br>21                               | ISCAN –<br>1915.71<br>1915.71<br>1915.71<br>1915.71<br>1915.71<br>1915.71                                                                   | 9047<br>8043<br>7040<br>6036<br>5033<br>4029                                        | os – Stair<br>14<br>14<br>14<br>14<br>14<br>14<br>14                                     | steps at<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60                                                                                                                                                                                       | Center<br>measure<br>measure<br>measure<br>measure<br>measure<br>measure                                                                   |
| 14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22                         | ISCAN –<br>1915.71<br>1915.71<br>1915.71<br>1915.71<br>1915.71<br>1915.71<br>1915.71                                                        | 9047<br>8043<br>7040<br>6036<br>5033<br>4029<br>3026                                | os – Stair<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14                               | steps at<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60                                                                                                                                                                                 | Center<br>measure<br>measure<br>measure<br>measure<br>measure<br>measure<br>measure                                                        |
| 14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23                   | ISCAN –<br>1915.71<br>1915.71<br>1915.71<br>1915.71<br>1915.71<br>1915.71<br>1915.71<br>1915.71                                             | 9047<br>8043<br>7040<br>6036<br>5033<br>4029<br>3026<br>2524                        | os — Stair<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14                         | steps at        60        60        60        60        60        60        60        60        60        60        60        60        60        60        60        60        60        60                                                   | Center<br>measure<br>measure<br>measure<br>measure<br>measure<br>measure<br>measure<br>measure                                             |
| 14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24             | ISCAN –<br>1915.71<br>1915.71<br>1915.71<br>1915.71<br>1915.71<br>1915.71<br>1915.71<br>1915.71<br>1915.71<br>1915.71                       | 9047<br>8043<br>7040<br>6036<br>5033<br>4029<br>3026<br>2524<br>2022                | os — Stair<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14                   | steps at        60        60        60        60        60        60        60        60        60        60        60        60        60        60        60        60        60        60        60        60                               | Center<br>measure<br>measure<br>measure<br>measure<br>measure<br>measure<br>measure<br>measure<br>measure                                  |
| 14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25       | ISCAN –<br>1915.71<br>1915.71<br>1915.71<br>1915.71<br>1915.71<br>1915.71<br>1915.71<br>1915.71<br>1915.71<br>1915.71<br>1915.71            | 9047<br>8043<br>7040<br>6036<br>5033<br>4029<br>3026<br>2524<br>2022<br>1520        | os — Stair<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14       | steps at        60        60        60        60        60        60        60        60        60        60        60        60        60        60        60        60        60        60        60        60        60        60           | Center<br>measure<br>measure<br>measure<br>measure<br>measure<br>measure<br>measure<br>measure<br>measure<br>measure<br>measure            |
| 14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26 | ISCAN –<br>1915.71<br>1915.71<br>1915.71<br>1915.71<br>1915.71<br>1915.71<br>1915.71<br>1915.71<br>1915.71<br>1915.71<br>1915.71<br>1915.71 | 9047<br>8043<br>7040<br>6036<br>5033<br>4029<br>3026<br>2524<br>2022<br>1520<br>979 | os — Stair<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14 | steps at        60        60        60        60        60        60        60        60        60        60        60        60        60        60        60        60        60        60        60        60        60        60        60 | Center<br>measure<br>measure<br>measure<br>measure<br>measure<br>measure<br>measure<br>measure<br>measure<br>measure<br>measure<br>measure |

| INDEX                                                                                                                | ZPOS                                                                                                                                                                                                                                         | CURRENT                                                                   | RAMPRATE   | WAITTime                                                                        |          |
|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------|----------|
| 1                                                                                                                    | 0.000                                                                                                                                                                                                                                        | 15                                                                        | 1          | 10                                                                              |          |
| 2                                                                                                                    | 27.185                                                                                                                                                                                                                                       | 15                                                                        | 1          | 10                                                                              |          |
| 3                                                                                                                    | 54.370                                                                                                                                                                                                                                       | 15                                                                        | 1          | 10                                                                              |          |
| 4                                                                                                                    | 81.555                                                                                                                                                                                                                                       | 15                                                                        | 1          | 10                                                                              |          |
| 5                                                                                                                    | 108.740                                                                                                                                                                                                                                      | 15                                                                        | 1          | 10                                                                              |          |
| 6                                                                                                                    | 135.925                                                                                                                                                                                                                                      | 15                                                                        | 1          | 10                                                                              |          |
| 7                                                                                                                    | 163.110                                                                                                                                                                                                                                      | 15                                                                        | 1          | 10                                                                              |          |
| 8                                                                                                                    | 190.295                                                                                                                                                                                                                                      | 15                                                                        | 1          | 10                                                                              |          |
| 9                                                                                                                    | 217.480                                                                                                                                                                                                                                      | 15                                                                        | 1          | 10                                                                              |          |
| 10                                                                                                                   | 244.665                                                                                                                                                                                                                                      | 15                                                                        | 1          | 10                                                                              |          |
| 11                                                                                                                   | 271.850                                                                                                                                                                                                                                      | 15                                                                        | 1          | 10                                                                              |          |
| 12                                                                                                                   | 299.035                                                                                                                                                                                                                                      | 15                                                                        | 1          | 10                                                                              |          |
| 13                                                                                                                   | 326.220                                                                                                                                                                                                                                      | 15                                                                        | 1          | 10                                                                              |          |
| 14                                                                                                                   | 353.405                                                                                                                                                                                                                                      | 15                                                                        | 1          | 10                                                                              |          |
| 15                                                                                                                   | 462.145                                                                                                                                                                                                                                      | 15                                                                        | 1          | 10                                                                              |          |
| 16                                                                                                                   | 570.885                                                                                                                                                                                                                                      |                                                                           |            |                                                                                 |          |
| 17                                                                                                                   | 679.625                                                                                                                                                                                                                                      | ZOCAN                                                                     |            |                                                                                 |          |
| 18                                                                                                                   | 788.365                                                                                                                                                                                                                                      | (1) Const                                                                 | ant stens  | 108 mm                                                                          |          |
| 19                                                                                                                   | 807 105                                                                                                                                                                                                                                      |                                                                           | un sieps,  |                                                                                 |          |
|                                                                                                                      | 007.100                                                                                                                                                                                                                                      |                                                                           |            |                                                                                 |          |
| 20                                                                                                                   | 1005.845                                                                                                                                                                                                                                     | (2) Finer                                                                 | steps at m | nagnet en                                                                       | ds.      |
| 20<br>21                                                                                                             | 1005.845<br>1114.585                                                                                                                                                                                                                         | (2) Finer                                                                 | steps at m | nagnet en                                                                       | ds.      |
| 20<br>21<br>22                                                                                                       | 1005.845<br>1114.585<br>1223.325                                                                                                                                                                                                             | (2) Finer :                                                               | steps at m | nagnet en                                                                       | ds.      |
| 20<br>21<br>22<br>23                                                                                                 | 1005.845<br>1114.585<br>1223.325<br>1332.065                                                                                                                                                                                                 | (2) Finer :                                                               | steps at m | 10<br>10                                                                        | ds.      |
| 20<br>21<br>22<br>23<br>24                                                                                           | 1005.845<br>1114.585<br>1223.325<br>1332.065<br>1440.805                                                                                                                                                                                     | (2) Finer :                                                               | steps at m | 10<br>10<br>10<br>10                                                            | ds.      |
| 20<br>21<br>22<br>23<br>24<br>25                                                                                     | 1005.845<br>1114.585<br>1223.325<br>1332.065<br>1440.805<br>1549.545                                                                                                                                                                         | (2) Finer :                                                               | steps at m | 10<br>10<br>10<br>10<br>10                                                      | ds.      |
| 20<br>21<br>22<br>23<br>24<br>25<br>26                                                                               | 1005.845<br>1114.585<br>1223.325<br>1332.065<br>1440.805<br>1549.545<br>1658.285                                                                                                                                                             | (2) Finer :                                                               | steps at m | 10<br>10<br>10<br>10<br>10<br>10<br>10                                          | ds.      |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27                                                                         | 1005.845<br>1114.585<br>1223.325<br>1332.065<br>1440.805<br>1549.545<br>1658.285<br>1767.025                                                                                                                                                 | (2) Finer (<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15               | steps at m | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                    | ds.      |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28                                                                   | 1005.845<br>1114.585<br>1223.325<br>1332.065<br>1440.805<br>1549.545<br>1658.285<br>1767.025<br>1875.765                                                                                                                                     | (2) Finer (<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15   | steps at m | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                              | ds.      |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29                                                             | 1005.845<br>1114.585<br>1223.325<br>1332.065<br>1440.805<br>1549.545<br>1658.285<br>1767.025<br>1875.765<br>1984.505                                                                                                                         | (2) Finer (2)<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15 | steps at m | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                        | ds.      |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30                                                       | 1005.845<br>1114.585<br>1223.325<br>1332.065<br>1440.805<br>1549.545<br>1658.285<br>1767.025<br>1875.765<br>1984.505<br>2093.245                                                                                                             | (2) Finer :                                                               | steps at m | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                  | ds.      |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31                                                 | 1005.845<br>1114.585<br>1223.325<br>1332.065<br>1440.805<br>1549.545<br>1658.285<br>1767.025<br>1875.765<br>1984.505<br>2093.245<br>2201.985                                                                                                 | (2) Finer (<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15   | steps at m | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10            | ds.      |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32                                           | 1005.845<br>1114.585<br>1223.325<br>1332.065<br>1440.805<br>1549.545<br>1658.285<br>1767.025<br>1875.765<br>1984.505<br>2093.245<br>2201.985<br>2310.725                                                                                     | (2) Finer (<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15   | steps at m | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10      | ds.      |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33                                     | 1005.845<br>1114.585<br>1223.325<br>1332.065<br>1440.805<br>1549.545<br>1658.285<br>1767.025<br>1875.765<br>1984.505<br>2093.245<br>2201.985<br>2310.725<br>2419.465                                                                         | (2) Finer (2)<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15 | steps at m | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | ds.      |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34                               | 1005.845<br>1114.585<br>1223.325<br>1332.065<br>1440.805<br>1549.545<br>1658.285<br>1767.025<br>1875.765<br>1984.505<br>2093.245<br>2201.985<br>2310.725<br>2419.465<br>2528.205                                                             | (2) Finer (2)<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15 | steps at m | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | ds.      |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35                         | 1005.845<br>1114.585<br>1223.325<br>1332.065<br>1440.805<br>1549.545<br>1658.285<br>1767.025<br>1875.765<br>1984.505<br>2093.245<br>2201.985<br>2310.725<br>2419.465<br>2528.205<br>2636.945                                                 | (2) Finer (2)<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15 | steps at m | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | ds.      |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36                   | 1005.845<br>1114.585<br>1223.325<br>1332.065<br>1440.805<br>1549.545<br>1658.285<br>1767.025<br>1875.765<br>1984.505<br>2093.245<br>2201.985<br>2310.725<br>2419.465<br>2528.205<br>2636.945<br>2745.685                                     | (2) Finer (2)<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15 | steps at m | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | ds.      |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37             | 1005.845<br>1114.585<br>1223.325<br>1332.065<br>1440.805<br>1549.545<br>1658.285<br>1767.025<br>1875.765<br>1984.505<br>2093.245<br>2201.985<br>2310.725<br>2419.465<br>2528.205<br>2636.945<br>2745.685<br>2854.425                         | (2) Finer (2)<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15 | steps at m | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | ds.      |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38       | 1005.845<br>1114.585<br>1223.325<br>1332.065<br>1440.805<br>1549.545<br>1658.285<br>1767.025<br>1875.765<br>1984.505<br>2093.245<br>2201.985<br>2310.725<br>2419.465<br>2528.205<br>2636.945<br>2745.685<br>2854.425<br>2963.165             | (2) Finer (2)<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15 | steps at m | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | ds.<br>F |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39 | 1005.845<br>1114.585<br>1223.325<br>1332.065<br>1440.805<br>1549.545<br>1658.285<br>1767.025<br>1875.765<br>1984.505<br>2093.245<br>2201.985<br>2310.725<br>2419.465<br>2528.205<br>2636.945<br>2745.685<br>2854.425<br>2963.165<br>3071.905 | (2) Finer (2)<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15 | steps at m | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | ds.<br>F |





## Summary

- High field Magnetic field measurement
  - Successfully upgraded existing magnetic field measurement system
  - Well positioned for future magnet testing of AUP MQXFAP magnets
  - Completed the MQXFAP2 magnet measurement last year
- Magnetic field measurement for diagnostics
  - Rotating coil good diagnostics tool for magnet condition check
- Magnetic field measurement on MQXF AP1b is on-going







### **Thank You for Your Attention!**



## Recently awarded SBIR project with HyperTech on MgB2 tube passive shielding for EIC

eRHIC IR Quadrupoles R&D programs



• To develop superconducting critical state modeling for MgB2 tube optimization







# **Magnetic Field Measurement in the**

#### Functional Specific be capable of operate at steady state

be capable of operate at steady state providing a gradient of 143.2 T/m in superfluid helium at 1.9 K, when powered with current of 17.9 kA.

- R-T-04: The MQXFA magnetic length requirement is 4.2 m with a tolerance of ± 5 mm at 1.9 K.
- R-O-02: The MQXFA field harmonics must be optimized particularly at high field. Table 2 (next slide) provides expected values for field harmonics at a reference radius of 50 mm.

| <u>.</u> | Triplet field quality version 4 - May 20 2015 - $R_{ref}$ =50 mm |             |            |            |           |            |           |            |           |            |         |        |           |            |           |            |
|----------|------------------------------------------------------------------|-------------|------------|------------|-----------|------------|-----------|------------|-----------|------------|---------|--------|-----------|------------|-----------|------------|
|          |                                                                  |             |            |            | Straight  | part       |           |            |           |            | En      | ds     |           | Inte       | gral      |            |
|          |                                                                  |             | System     | atic       |           |            | Unce      | ertainty   | Ra        | ndom       |         |        | Q1        | /Q3        | Q2        | a/b        |
| Normal   | Geometric                                                        | Ass. & cool | Saturation | Persistent | Injection | High Field | Injection | High Field | Injection | High Field | CS      | NCS    | Injection | High Field | Injection | High Field |
| 2        |                                                                  |             |            |            |           |            |           |            | 10        | 10         |         |        |           |            |           |            |
| 3        | 0.000                                                            | 0.000       | 0.000      | 0.000      | 0.000     | 0.000      | 0.820     | 0.820      | 0.820     | 0.820      |         |        | 0.000     | 0.000      | 0.000     | 0.000      |
| 4        | 0.000                                                            | 0.000       | 0.000      | 0.000      | 0.000     | 0.000      | 0.570     | 0.570      | 0.570     | 0.570      |         |        | 0.000     | 0.000      | 0.000     | 0.000      |
| 5        | 0.000                                                            | 0.000       | 0.000      | 0.000      | 0.000     | 0.000      | 0.420     | 0.420      | 0.420     | 0.420      |         |        | 0.000     | 0.000      | 0.000     | 0.000      |
| 6        | -2.200                                                           | 0.900       | 0.660      | -20.000    | -21.300   | -0.640     | 1.100     | 1.100      | 1.100     | 1.100      | 8.943   | -0.025 | -16.692   | 0.323      | -18.593   | -0.075     |
| 7        | 0.000                                                            | 0.000       | 0.000      | 0.000      | 0.000     | 0.000      | 0.190     | 0.190      | 0.190     | 0.190      |         |        | 0.000     | 0.000      | 0.000     | 0.000      |
| 8        | 0.000                                                            | 0.000       | 0.000      | 0.000      | 0.000     | 0.000      | 0.130     | 0.130      | 0.130     | 0.130      |         |        | 0.000     | 0.000      | 0.000     | 0.000      |
| 9        | 0.000                                                            | 0.000       | 0.000      | 0.000      | 0.000     | 0.000      | 0.070     | 0.070      | 0.070     | 0.070      |         |        | 0.000     | 0.000      | 0.000     | 0.000      |
| 10       | -0.110                                                           | 0.000       | 0.000      | 4.000      | 3.890     | -0.110     | 0.200     | 0.200      | 0.200     | 0.200      | -0.189  | -0.821 | 3.119     | -0.175     | 3.437     | -0.148     |
| 11       | 0.000                                                            | 0.000       | 0.000      | 0.000      | 0.000     | 0.000      | 0.026     | 0.026      | 0.026     | 0.026      |         |        | 0.000     | 0.000      | 0.000     | 0.000      |
| 12       | 0.000                                                            | 0.000       | 0.000      | 0.000      | 0.000     | 0.000      | 0.018     | 0.018      | 0.018     | 0.018      |         |        | 0.000     | 0.000      | 0.000     | 0.000      |
| 13       | 0.000                                                            | 0.000       | 0.000      | 0.000      | 0.000     | 0.000      | 0.009     | 0.009      | 0.009     | 0.009      |         |        | 0.000     | 0.000      | 0.000     | 0.000      |
| 14       | -0.790                                                           | 0.000       | -0.080     | 1.000      | 0.210     | -0.870     | 0.023     | 0.023      | 0.023     | 0.023      | -0.545  | -1.083 | 0.033     | -0.856     | 0.106     | -0.862     |
| Skew     |                                                                  |             |            |            |           |            |           |            |           |            |         |        |           |            |           |            |
| 2        |                                                                  |             |            |            |           |            |           |            | 10.000    | 10.000     | -31.342 |        | -2.985    | -2.985     | -1.753    | -1.753     |
| 3        | 0.000                                                            | 0.000       | 0.000      | 0.000      | 0.000     | 0.000      | 0.650     | 0.650      | 0.650     | 0.650      |         |        | 0.000     | 0.000      | 0.000     | 0.000      |
| 4        | 0.000                                                            | 0.000       | 0.000      | 0.000      | 0.000     | 0.000      | 0.650     | 0.650      | 0.650     | 0.650      |         |        | 0.000     | 0.000      | 0.000     | 0.000      |
| 5        | 0.000                                                            | 0.000       | 0.000      | 0.000      | 0.000     | 0.000      | 0.430     | 0.430      | 0.430     | 0.430      |         |        | 0.000     | 0.000      | 0.000     | 0.000      |
| 6        | 0.000                                                            | 0.000       | 0.000      | 0.000      | 0.000     | 0.000      | 0.310     | 0.310      | 0.310     | 0.310      | 2.209   |        | 0.210     | 0.210      | 0.124     | 0.124      |
| 7        | 0.000                                                            | 0.000       | 0.000      | 0.000      | 0.000     | 0.000      | 0.190     | 0.190      | 0.190     | 0.190      |         |        | 0.000     | 0.000      | 0.000     | 0.000      |
| 8        | 0.000                                                            | 0.000       | 0.000      | 0.000      | 0.000     | 0.000      | 0.110     | 0.110      | 0.110     | 0.110      |         |        | 0.000     | 0.000      | 0.000     | 0.000      |
| 9        | 0.000                                                            | 0.000       | 0.000      | 0.000      | 0.000     | 0.000      | 0.080     | 0.080      | 0.080     | 0.080      |         |        | 0.000     | 0.000      | 0.000     | 0.000      |
| 10       | 0.000                                                            | 0.000       | 0.000      | 0.000      | 0.000     | 0.000      | 0.040     | 0.040      | 0.040     | 0.040      | 0.065   |        | 0.006     | 0.006      | 0.004     | 0.004      |
| 11       | 0.000                                                            | 0.000       | 0.000      | 0.000      | 0.000     | 0.000      | 0.026     | 0.026      | 0.026     | 0.026      |         |        | 0.000     | 0.000      | 0.000     | 0.000      |
| 12       | 0.000                                                            | 0.000       | 0.000      | 0.000      | 0.000     | 0.000      | 0.014     | 0.014      | 0.014     | 0.014      |         |        | 0.000     | 0.000      | 0.000     | 0.000      |
| 13       | 0.000                                                            | 0.000       | 0.000      | 0.000      | 0.000     | 0.000      | 0.010     | 0.010      | 0.010     | 0.010      | 0.000   |        | 0.000     | 0.000      | 0.000     | 0.000      |
| 14       | 0.000                                                            | 0.000       | 0.000      | 0.000      | 0.000     | 0.000      | 0.005     | 0.005      | 0.005     | 0.005      | -0.222  | 0.041  | -0.021    | -0.021     | -0.012    | -0.012     |

Field Quality Reference Table in "Functional Requirements Specification" Document





### Warm Measurement of MQXFAP2, Averaged +/-15 A - BNL (10/15) vs LBNL Data (6/15) – continued



### Warm Measurement of MQXFAP2, Averaged +/-15 A - BNL (10/15) vs LBNL Data (6/15) – continued

