High-Precision Magnetic Field Measurement and Mapping of the LEReC 180° Bending Magnet Using Very Low Field NMR Probe [140-400 Gauss]

H. Song[†], D. Bruno, K. Capobianco-Hogan, C. Degen, A. Fedotov, D. M. Gassner, P. Joshi, J. Kewisch, C. Mi, T. Miller, S. Seletskiy, P. Thieberger, J. Tuozzolo, P. Wanderer

Brookhaven National Laboratory, Upton, NY, 11720, USA

a passion for discovery

International Magnetic Measurement Workshop 24th – 28th June 2019

MMW21

Outlines

- Introduction: Measurement specs
- Preps:
 - Hysteresis loop
 - Plan
 - Repeatability test at center points
 - Measurement along center-center lines
 - Single radius at various currents
- Measurement at 5 heights and 5 radii
 - Three currents
 - Compared with simulated results
- Summary

Electron Ion Collider

Multiple strategic R&D projects for eRHIC at BNL

The first ever electron cooling based on the RF acceleration of electron beams was experimentally demonstrated on April 5, 2019 at Low Energy RHIC Electron Cooler (LEReC) at BNL.

The Cornell-BNL Test accelerator has achieved Energy Recovery for the fist time on June 24th, 2019

Introduction

- The first critical step in obtaining successful 3D non-magnetized cooling of the Au ion bunches in the RHIC cooling section was matching the electron beam energy with a relative error less than 5e-4 to the ion beam energy.
- Since electron beam kinetic energy is just 1.6 MeV, measuring the absolute e-beam energy with required accuracy and eventually achieving the electron-ion energy matching was a nontrivial task.
- One of the key components is the 180 degree bend dipole which steers the electron beams from the "Yellow" to the "Blue" RHIC rings.
- Precise knowledge of the magnetic field is critical and 10⁻⁴ accuracy in the integral field is required.

Magnet overview, requirement, coordinate system

Field Strength	180 – 325 gauss
Range	
Measurement	< 0.01 % (18.0 milligauss)
resolution	
Absolute Accuracy	50 milligauss
Signal to noise	< 20milligauss @ 180 gauss with a ~0.1
ratio	Hz measurement rate
Remotely located	100 m ± 20%
electronics	

Coordinate system for magnetic measurement and scanning

10 cm (unchanged)

Modified design ----

 Window inner width (on shield) now is wider (X = +/- 50 cm)

(2) Shield is magnetically decoupled from magnet (keep the same gap 8 cm).

60

40

10

100 cm

-60

128 cm

Measurement Plan, Hall/NMR Probe w Fixture

- Along 5 radii
- Nominal R = 350 mm, R = 350 mm ±10mm, R = 350 ±20mm
- Brookhaven Science Associates

•

NMR

Hall

- About 15 mm apart
- NMR height can be adjusted 10 mm/step
- Field at 5 heights to be measured, Z=0 mm, \pm 10 mm, \pm 20mm,

NMR probe test, low field – homogeneous field

Measurements should be done at the field of **By=140 Gauss** to **300 Gauss** (2.6 MeV operation).

Brookhaven Science Associates

180 deg Dipole - Field Measurement

Challenges in the NMR locking and timing

- NMR Locking at low field is considerably challenging
 - Solutions, turn off the motor when starting to achieve NMR locking
- Motion drive:
 - X-axis direction is screw driven, and the Y-axis direction is belt drive though with linear encoder
 - Wait for ~10 seconds in total to achieve short-time equilibrium (ideally would maybe 20 seconds)
 - Even 10 seconds, overall each NMR runs takes 8-9 hours.

Point Group 180 DIPOLE REF (copy)::CONSTRUCTED						
Point Name	Х	Y	Z			
	(mm)	(mm)	(mm)			
CENTER POINT 180 MAG	-414.0978	444.1920	0.2255			
+			.+.			

In-plane Z flatness <0.135 mm

Distance between NMR home and magnet center is $\Delta X = -414.098$ mm, $\Delta Y = -444.192$ mm

cT11

Survey

180 deg Dipole - Field Measurement

Hysteresis loop optimization – python program

Repeatability test

Exponential demagnetization is better All the data taken in the following w Exp0.075

Brookhaven Science Associates

Precision Check at Magnet Center Point

NMR and Hall Repeatability Test at Magnet Center (0,0), at 301 Gauss with current 3.98A and over 12 hours

Hall precision, < 0.4 Gauss

NMR precision, 0.06 Gauss

Field on magnet center lines, (0,Y,0)

Hall can be corrected by NMR – design principle, Origin = center

7/3/2019

180 deg Dipole - Field Measurement

Field on magnet center lines, (X, 0, 0)

Measurement plan

- Part A multiple points of currents/fields, ZHeight = 0mm, Radius 350 mm, 274 points – Hall and NMR (uniform field)
 - 2.4 A

Along beam trajectory – Z center

- Both NMR and Hall Center points along X axis are corrected for reference/validation/correction
- They are aligned based on 15 mm offset

Measured NMR (full field) + Hall (lower field)

Scanning the Z = 0 mm, R = 350 mm trajectory using deferent operational currents.

Field Mapping Plan and Procedure

In-plane (same height) Results and Analysis

- A typical field scan with 5+1 different radii
 - Start with R 350 mm
 - R 330mm
 - R 340mm
 - R 350mm
 - R 360mm
 - R 370mm

CURRENT OF 2.6586A

Results

In-plane horizontal comparison – 5 heights of (5+1 radii)
Vertical comparison – 5+1 radii of (5 heights)

7/3/2019

180 deg Dipole - Field Measurement

Field of I=2.6586A and z=+20mm In-plane horizontal comparison

Brookhaven Science Associates

7/3/2019

180 deg Dipole - Field Measurement

Field of I=2.6586A and z=+10mm In-plane horizontal comparison

Brookhaven Science Associates

7/3/2019

180 deg Dipole - Field Measurement

Field of I=2.6586A and z=+00mm In-plane horizontal comparison

Brookhaven Science Associates

7/3/2019

180 deg Dipole - Field Measurement

Field of I=2.6586A and z=-10mm In-plane horizontal comparison

Field of I=2.6586A and z=-20mm In-plane horizontal comparison

180 deg Dipole - Field Measurement

Data smoothing: correct drop-outs

[I, Z, R] = [2.6586 A, 20 mm, 370 mm]

- Slight difference in quantity between simulated and measured data.
- Qualitative info helps data smoothing.
- Measured data → Beam operation

ANALYSIS AND DISCUSSIONS

I=2.6586A

180 deg Dipole - Field Measurement

29

Brookhaven Science Associates

7/3/2019

Measured Results

Comparison plots of the measured magnetic fields for all radii, at a fixed Z = 10 mm elevation, with I = 2.6586 A. The radius of 350 mm was measured twice.

Simulated data

Comparison plots of the simulated magnetic fields for all radii, at a xed Z = 10 mm elevation, with I = 2.6586 A.

Measured Results

Same radius R = 350 mm, Same current I = 2.6586 A, Vertical comparison

Asymmetry observed in measured data

But field at magnet edge, low field strength, less contribution to the field integral.

7/3/2019

Simulated data

Same radius R = 350 mm, Same current I = 2.6586 A, Vertical comparison

Asymmetry observed in measured data

But field at magnet edge, low field strength, less contribution to the field integral.

Brookhaven Science Associates

Closer look at asymmetry

- · More variations in measured vs simulated,
- But field at magnet edge, lower field strength, less contribution to the field integral.
- Symmetry has been improved with higher current

Field integral – measured data

		Radius					
Current	${f Elevation}^*$	330 mm	340 mm	350 mm	360 mm	370 mm	
2.6586 A	20 mm	208794.0127	215158.6214	221516.0992	227890.3956	234247.7224	
	$10 \mathrm{mm}$	208726.6595	215109.5603	221479.2296	227855.1657	234227.0699	
	$0 \mathrm{mm}$	206290.5098	215065.6187	221431.4392	227801.0622	234196.1919	
	-10 mm	208495.1037	214866.0687	221244.5334	227606.5791	233991.8624	
	-20 mm	208559.2216	214918.1966	221278.1539	227625.8195	233996.4407	
3.1911 A	20 mm	249937.4935	257569.7252	265196.9944	272842.2223	280469.8375	
	$10 \mathrm{mm}$	249981.8288	257626.0727	265264.7388	272902.0625	280551.6631	
	$0 \mathrm{mm}$	250060.6357	257692.7363	265332.0833	272989.4684	280617.4032	
	-10 mm	250111.6537	257741.3119	265376.0085	273006.5926	280635.2356	
	-20 mm	250172.6636	257805.8321	265440.5032	273068.4137	280702.6773	
3.9833 A	20 mm	311638.4268	321158.9187	330674.3802	340185.3529	349700.8613	
	$0 \mathrm{mm}$	311519.1884	321031.7337	330544.5886	340062.9249	349586.4819	
	-20 mm	311376.8089	320893.1379	330406.0179	339924.7336	349439.0384	

Field integral information for the 180 deg dipole magnet for three deferent currents, at five radii, at deferent elevations. Units: [Gmm]

Field integral calculated with corrected measured data for five radii, but same elevation of Z = 20 mm

Summary

- Have completed the mapping of 180 degree dipole for LEReC project.
 - Successfully applied high precision low field NMR probe, combined with Hall probe.
 - Measured data provide very accurate picture, which is supported by its general agreement with computational predictions.
- Performed detailed analysis and comparison at various radius and height,
 - Slight asymmetry observed at magnet edges due to lower field strength, but small field strength → less contribution to the field integral.
- Field and integral information shared with physicist, and findings from these measurements can be directly used to support beam operation.

Thank you for your attentions

7/3/2019

Backup slides

CURRENT OF 3.1911A

In-plane horizontal comparison – 5 heights of (5+1 radii)
Vertical comparison – 5+1 radii of (5 heights)

7/3/2019

180 deg Dipole - Field Measurement

Field of I=3.1911A and z=+20mm In-plane horizontal comparison

Brookhaven Science Associates

7/3/2019

180 deg Dipole - Field Measurement

Field of I=3.1911A and z=+10mm In-plane horizontal comparison

Brookhaven Science Associates

7/3/2019

180 deg Dipole - Field Measurement

Field of I=3.1911A and z=+00mm In-plane horizontal comparison

7/3/2019

180 deg Dipole - Field Measurement

43

NATION

Field of I=3.1911A and z=-10mm In-plane horizontal comparison

7/3/2019

180 deg Dipole - Field Measurement

Field of I=3.1911A and z=-20mm In-plane horizontal comparison

Brookhaven Science Associates

7/3/2019

180 deg Dipole - Field Measurement

CURRENT OF 3.9833A

In-plane horizontal comparison – 5 heights of (5+1 radii)
Vertical comparison – 5+1 radii of (5 heights)

7/3/2019

180 deg Dipole - Field Measurement

Field of I=3.9833A and z=+20mm In-plane horizontal comparison

7/3/2019

180 deg Dipole - Field Measurement

Field of I=3.9833A and z=+00mm In-plane horizontal comparison

Field of I=3.9833A and z=-20mm In-plane horizontal comparison

7/3/2019

180 deg Dipole - Field Measurement

Field of I=3.9833A and R=330mm Vertical comparison

Field of I=3.9833A and R=340mm Vertical comparison

BROOKHAVEN NATIONAL LABORATORY

7/3/2019

180 deg Dipole - Field Measurement

Field of I=3.9833A and R=350mm_Init Vertical comparison

7/3/2019

180 deg Dipole - Field Measurement

Field of I=3.9833A and R=350mm Vertical comparison

Field of I=3.9833A and R=360mm Vertical comparison

7/3/2019

180 deg Dipole - Field Measurement

Field of I=3.9833A and R=370mm Vertical comparison

7/3/2019

180 deg Dipole - Field Measurement

A FEW MORE THINGS

Brookhaven Science Associates

7/3/2019

180 deg Dipole - Field Measurement

Hysteresis Loop

