Permanent Magnet Dipoles for the ESRF Upgrade

J. Chavanne, C. Benabderrahmane, C.Penel, G. Le Bec, F. Bidault, M. Paulin, G. Giroud, B.Cottin, E. Fene, P. Arnoux, F. Villar, S .Liuzzo, L. Farvacque, P.Raimondi

OUTLINE

- Context & motivation
- Design
- Construction
- Magnetic measurements
- Temperature stability
- Summary

PERMANENT MAGNET DIPOLES

Dipoles with longitudinal gradient (DL)

Non constant field along beam path

- Field matched to varying horizontal dispersion (emittance reduction)
 - Higher field at lower dispersion
 - Lower field at higher dispersion
- Practically done with field steps (5 in our case)

Permanent Magnet (PM) structure

- Demonstrate feasibility of low cost PM Dipoles
 - Low procurement cost
 - Low running cost ~ 0
- Benefits from in-house experience on PM devices (Insertion-Devices)
- Well adapted to the segmentation approach
- compactness

Early resistive designs

Permanent magnet design

DL MAGNETIC STRUCTURE

Parameter	Value	Unit	
Field	0.64 to 0.17 (DL1) 0.53 t0 0.17 (DL2)	т	
Mech. length	1784	mm	
Gap	25	mm	
Deflection angle	31.7 (DL1), 29.4 (DL2)	mrad	
Power	0	kW	
PM weight/DL	~ 45	kg	
# of units	128+4		
GFR (HxV)	26x18	mm	
$\Delta B/B$ in GFR	<10 ⁻³		

- Module M2 to M5 geometrically identical but populated differently with magnet blocks
- Module M1 (low field) modified for integration of a photon beam absorber

DL MAGNETIC DESIGN

Pole shape optimization

Beam dynamic model

- Field representation
- Magnetic length
- Multipoles
- ..etc

3D magnetic model (RADIA)

-

Magnetic optimization

- Magnetic interaction between
 modules (gap between modules)
- Modules place on curved beam path
- Magnetic crosstalk with neighboring magnet
- Field tuning scheme (flux shunts)
- passive thermal compensation (Fe-Ni shunts)

Magnetic cross-talk with neighboring magnets

Simulation of magnetic measurements (Stretched moving wire)

- individual modules
- full magnet assembly
- Field integrals

... etc

PERMANENT MAGNET MATERIAL

PM material: Sm₂CO₁₇ XGS30H (Magsound, China, http://www.magsound.com)

Recent progress in Sm₂Co₁₇ materials @ Magsound

Material	Grade	Energy Product(BH)max		Residual Induction Br		Coercive Force HcB		Intrinsic Coercive Force Hcj		Density D	Rev.Tenp Coeff α(Br)	Curie Temp TC	Max Working Temp Tw
		KJ/m ³	MGsOe	Т	KGs	KA/m	KOe	KA/m	KOe	g/cm ³	%/°C	°C	°C
	XGS30M	223-247	28-31	1.08-1.12	10.8-11.2	318-804	4.0-10.1	398-1194	5.0-15.0	8.4 -0.	-0.03	≥850	350
	XGS30	223-247	28-31	1.08-1.12	10.8-11.2	700-828	8.8-10.4	1194-1990	15.0-25.0				
	XGS30H	223-247	28-31	1.08-1.12	10.8-11.2	700-828	8.8-10.4	≥1990	≥25.0				
	XGS32M	231-255	29-32	1.10-1.15	11.0-11.5	318-804	4.0-10.1	398-1194	5.0-15.0				
	XGS32	231-255	29-32	1.10-1.15	11.0-11.5	755-850	9.5-10.7	1194-1990	15.0-25.0				
des	XGS32H	231-255	29-32	1.10-1.15	11.0-11.5	755-858	9.5-10.8	≥1990	≥25.0				
ew grac	XGS33M	238-255	29.9-32	1.12-1.17	11.2-11.7	318-836	4.0-10.5	398-1194	5.0-15.0				
	XGS33	238-255	29.9-32	1.12-1.17	11.2-11.7	820-860	10.3-10.8	1194-1990	15.0-25.0				
z	XGS33H	238-255	29.9-32	1.12-1.17	11.2-11.7	843-868	10.6-10.9	≥1990) ≥25.0				

15000 magnet blocks ordered (~13000 effectively used)

- 6 tons of material
- 2 main types of PM blocks + 1 for field adjustment (1/4 block)
- Two batches: delivery September 2016 & December 2016
- Thermal stabilization @ 120 C

Sm_2C0_{17}

- Low temperature coefficients
 - High radiation hardness Resistance to radiation induced demagnetization

MAGNET BLOCKS DATA

Magnet type FS: (max-min)/avg=3.5 %, stdev/avg=0.52 %

Use of magnet sorting

DL IRON MATERIAL: CONTROL OF STEEL QUALITY

Raw hot rolled material (low carbon steel)

Delivery to subcontractors for machining Surface treatment Assembly without PM Painting

Flame cutting + heat treatment

Semi finished product (iron blocks)

DL ASSEMBLY: DONE IN-HOUSE

Magnet blocks (Magsound,)

Machined empty modules AMF (UK), CECOM (It)

Magnet block insertion in modules (dedicated tools)

Magnetic measurement & field tuning for individual modules (stretched wire)

Magnetic measurements of full DL & final field tuning (stretched wire)

DL assembly

The European Synchrotron

DL FOR LATTICE DESCRIPTION

Example DL2 model with 5 (field, magnetic length)

Find $B_i, L_i (i = 1,5)$

with
$$\sum_{i=1}^{5} B_i L_i = nominal \ integral and$$

Min (*|modelled trajectory – tracked trajectory|*)

DL2				
B [T]	L[m]			
-0.5232	0.383			
-0.3831	0.348			
-0.2979	0.356			
-0.2273	0.365			
-0.1751	0.371			

MODULAR CONCEPT

5 independent modules/ DL

A module can be removed/installed from/in the assembly Possible implementation of quadrupole function in one or two modules

- Same yoke
- Modified pole & magnet block distribution
- Future development

ANTICIPATION OF MAGNETIC MEASUREMENTS WITH 3D MODEL

Stretched wire positioned according to the best line fit of tracked trajectory between end pole faces of DL

Module axis placed on trajectory (5 straight segments)

~ curved magnet

- Field tuning of each module
 - Limited tuning of the full assembly
 - Needs knowledge of the "ideal" integral for each module
 - Tuning done with Fe-Si shims (flux shunt)

Integral of full

assembly

Integral of individual module ach Fe-Si shims

Needs to anticipate the magnetic crosstalk between modules to achieve targeted DL integral:

Movable flux shunt

Simulation results

$$c_{int} = \frac{I_{sum} - I_{DL}}{I_{DL}} = \begin{cases} -1.13 \ \% \ for \ DL2 \\ -1.16 \ \% \ for \ DL1 \end{cases}$$

MAGNETIC CROSSTALK BETWEEN MODULES

Magnetic measurements of individual modules and assembly give access to c_{int}

The measured values for c_{int} agree very well with simulations

MAGNETIC CROSSTALK WITH NEIGHBORING QUADRUPOLES

distance iron to iron quadrupole DL

- 47 mm for DL1 (both sides)
- 47 mm & 150 mm for DL2

Magnetic simulation :

- 0.46 % reduction in deflection angle for DL1
- 0.15 % for DL2
- Confirmed with measurements

End module strength increased by 0.96 % for DL1

End module strength increased by 0.96 % & 0.13% for DL2

MEASUREMENT AND TUNING OF INDIVIDUAL MODULES

In total 132 x 5 modules assembled and tuned

DL MAGNETIC MEASUREMENTS

DLs

DB/B

Field integral homogeneity in GFR

- 332 segments
- pole gap 24.5 mm
- Segment length 0.62 mm

DL FIELD INTEGRAL AT CENTER

DL field tuning using movable shunts

FIELD INTEGRAL & HARMONIC ANALYSIS (STRAIGHT INTEGRALS)

Harmonic analysis

Simulation using RADIA model

The European Synchrotron

2ND INTEGRAL

Second integral tuned with movable end shims.

TEMPERATURE STABILITY

•Dominated by PM material temperature coefficient

Field integral measurements on PM DL modules NdFeB, Sm₂C0₁₇

Special FeNi shunt , thickness 0.8 mm to 4.5 mm depending on module type (Thermoflux 55/100 G, curie temperature ~ 55 C, ~ -2%/C)

ESRF

Measurement of integral & temperature vs time

Residual slope ~ 10 ppm/C

Magnet: DL2B_11_14

RADIATIONS IN PERMANENT MAGNETS

ESRF storage ring: 6 GeV,

The European Synchrotron

RADIATIONS IN PERMANENT MAGNETS (CONT'D)

In present storage ring Sm₂CO₁₇ permanent magnets used in low gap undulators: In-Vacuum undulators

- Magnetic gap 6 mm
- Neutron doses at PM blocks are ~ 1 Gy/h derived from beam loss measurements
- No visible demagnetization of permanent magnet material after 15 years of operation (< 0.2 %)

Magnetic stability vs radiations should be enough for 20-25 years operation

STATUS & SUMMARY

Status

- Production completed before mid October 2017
- Installed in the ring tunnel

Summary

- Methods and technics for a large scale production of PM dipoles have been developed
- Simple magnetic structures, no electrical power
- Segmented (modules) approach for DLs has interesting flexibility
- Sm₂Co₁₇ material is the most suitable to ensure long term magnetic stability
- Magnetic measurements with stretched moving wire very efficient and reliable

