

Magnetic measurements systems for the Super-FRS magnets

Pawel Kosek

on behalf of GSI-CERN collaboration on Super-FRS testing:

GSI: G. Golluccio, A. Chiuchiolo, K. Sugita, E. J. Cho, H. Muller

CERN: S. Russenschuck, G. Deferne, A. J. Windischhofer, L. Fiscarelli

Outline

- Super-FRS Project overview
 - About Super-FRS
 - Test Facility at CERN
 - Magnets
- Magnetic Measurements
 - Measurement requirements
 - Measurement Devices
 - Rotating coil
 - Single stretched wire
 - Translating Flux-meter
- Summary

Super FRagment Separator

Pawel Kosek - SuperFRS Magnets IMMW21

Test Facility @ CERN (B.180)

- 3 test benches for cold (4K) testing
- 9 power converters for individual magnet powering + energy extraction
- Preparation area

Pawel Kosek - SuperFRS Magnets IMMW21

Multiplets

- 7+1 short multiplets (SM)
- Standard configuration:
 1x Quad + 1 x Hex
- 2.6 m long

- Warm bore (192 mm)
- DC each magnet individually powered
- Self protecting

- 24+1 long multiplets (LM)
 - Up to 9 magnets (quadrupoles, sextupoles, octupoles, steerers)
 - 7 m, 6.5m, 6m long, 60 ton

Production: ASG, Italy

Multiplets' Magnets

	Quad III (SQ)	Quad IV (LQ)	Sextupole	Octupole	Steering dipole
Number of magnets	44	32	39	42	13
Length of iron (mm)	800	1200	500	-	500
Pole tip radius (mm)	250	250	237	-	250
Warmbore radius (mm)	192	192	192	-	192
Outer radius of yoke (mm)	701.4	701.4	420.85	-	405.8
Integrated gmax (Tm/mn-1)	8	11.5	20	84	0.1
Ramp time (s)	120	120	120	120	120
Imax(A)	300	300	291	160	280
Inductance @Imax (H)	16	21	0.88	0.097	0.62
Stored energy @Imax (kJ)	664	952	37	1.3	2.6
Number of layers	26	26	22	2	1
Number of turn/layer	48	48	11	18	5 Blocks
Bpeak in the conductor @Imax (T)	4.2	4.2	1.9	0.2	1
Magnet weight (ton)	8	12	2.5	0.125	1.6
Integrated Field Quality at 190 mm	±1.0*10-3 < 0.8 gmax		±5.0*10-3	±8.0*10-3	±8.0*10-3
	+6.0*10.2 > 0.8 gmay				

Pawel Kosek - SuperFRS Magnets IMMW21

Dipoole type 3	
Central field at Inom (T)	1.6
Integral field at Inom (Tm)	3.403
Integral field at Imin (Tm)	0.319
Magnetic length (mm)	2127
total measurement length (mm)	4000
Bending angle °	9.75
Curvature radius (mm)	12.5
Aperture width (mm)	<u>+</u> 460.8 5
Aperture height (mm)	<u>+</u> 85
Good Field region width (mm)	<u>+</u> 190
Good Field region height (mm)	<u>+</u> 70
Acceptance criteria of field quality on the GFR boundary (Units of the integral field)	<u>+</u> 3
Rise time to Inom (s)	120

- 3 units dipole type 2 [11 degree bending angle]
- 18 units dipole type 3 [9.75 degree bending angle]
- 3 units branching dipole [9.75 bending angle]
- Warm iron, SC coil
- Aperture ±190mm x ±70mm
- Weight: 50 to 60 ton

Measurement devices:

- Translating flux-meter array
- Stretched wire
- 3D Mapper

Production: Elytt, Spain

Magnetic measurements

Goals:

Integral field measurements:

- Conformity to QA SAT parameters
- Magnet to magnet reproducibility
- Localization of the magnetic field for installation purposes (fiducialization)
- Local measurements and field errors:
 - Measurement in the 2D region and integral
 - Only for the first of series
 - Verify mechanical assembly tolerances

Challenges:

- Large dimension of the Good Field Region
 - 170 mm radius for quadrupoles
 - 380 x 140 mm for dipoles
- Extended fringe field
- No possibility of standard calibration procedures
- Tight requirements of accuracy and fiducialization

Field Quality		Current levels	5
	Quads	Integral field homogeneity	<u>+</u> 5*10 ⁻⁵
		Absolute integral field accuracy	<u>+</u> 5*10 ⁻⁴
	Multipoles	Absolute integral field accuracy	<u>+</u> 1*10 ⁻³
		Integral field homogeneity	<u>+</u> 2*10 ⁻⁴
Fiducialization	Quads and multipoles	Angle (mrad)	<0.5
		Axis (mm) except steerers	0.2

Pawel Kosek - SuperFRS Magnets IMMW21

Carbon fiber shaft (prototype)

Carbon Fiber structure

- Support structure for PCB
- rigidity
- weight reduction

Test Program

- Test on different bearings
- Test of eddy currents in the carbon shell:
- measure in standard bucking configuration the quadrupole with the shaft centered at various speeds
- Comparison with standard coil
- Test at cold @2.6 T

Pawel Kosek - SuperFRS Magnets IMMW21

(1996)

Rotating shaft - design

- 3 PCBs, radial, 5 coil configuration:
 - External coil radius of 167mm
 - Bard thickness : 3.373 mm
 - 6 layers, 12 windings each = 72 turns
 - 2 long segments: 1315.2 mm (coil) ;1326 mm (board), surface ~1.40 m² each
 - 1 short segment, length: 104.6mm (coil); 108.6 mm (board)
 - Theoretical bucking ratios dipole and quadrupole in range of 10000.
 - Surface calibration on reference dipole designed value: 1.402 m²

(8,801)	• (1320)			(0.3)	
(98)	(1310.4)			.0	
8) (8.8) •		1			5
- 0			<u>n</u> N		
0 0	•				(64.
0 0	•		a		
• 1					
<u> </u>					
0					
	(663)			(663)	

	Mes Grd	M1 Grd	Cent Grd	M2 Grd	Res Grd
A Segment 1 (m2)	1.402159	1.402123	1.402128	1.401995	1.402195
A Segment 2 (m2)	1.401968	1.401861	1.40199	1.401831	1.401778

Pawel Kosek - SuperFRS Magnets IMMW21

Rotating coil evaluation

- Mechanical Measurements of the PCB boards
- Magnetic Measurements on the span of few months done on calibration quadrupole (0.5 m long, ~0.5 Tm/m, 170mm pole radius)
- Different configurations of DAQ system:
 - Multiple FDIs vs single FDI
- Assessment of gradient and harmonics:
 - Speed variation
 - Rotation direction
 - Longitudinal position
 - Current level
 - Transversal position
- Dipole and quadrupole Filed angle
- Theoretical vs real bucking ratios

Mechanical measurements of PCB

- No calibration devices for radius or angle for shaft this size
- Metrology report measurement of reference holes + X-ray scan of the printed coil to the reference holes

Laser tracker map:

- Static (flatness)
- Dynamic center of the rotation sag of the shaft is in accordance with simulated value (60μm)

	Angle in µrad	
Axis C with Axis A	8.73	
Axis C with Axis B	14.29	
Axis C with Axis C	0	-
Axis C with Axis D	-3.17	
Axis C with Axis E	12.7	-

 Radius A
 167.01

 Radius B
 83.51

 Radius C
 -0.003

 Radius D
 -83.50

 Radius E
 -167.01

Radius in mm

Table 2.1: Angles between axes

Table 2.2: Radii of axes

Ly

Pawel Kosek - SuperFRS Magnets IMMW21

Harmonics – Noise analysis

- Higher harmonics lost in the noise floor (10⁻⁸ Vs)
- Up to 18th harmonic recognizable
- Noise floor on compensated signal approximately order of magnitude lower then on absolute
- Quadrupole compensation analog A-B-C+D
- Even though compensation not great:

	Dipole Comp.	Quad. Comp.		
	Theoretical V	alues		
Seg 1	8250	13965		
Seg 2	26900	11495		
Fluxes of each coil				
Seg 1	95	750		
Seg 2	300	1840		
Analog Bucking				
Seg 1	45	390		
Seg 2	330	270		

Rotating coil - Gradient measurement

- "Standard" rotating coil configuration: 2nd harmonic and coil distance gives the gradient ("Measurement" or "A" coil)
- "Gradient Coil": Coil A Coil B and distance between them (analog or digital)
- Also from individual coils (except central) and their respective radii
- Missing field in the gap:
 - numerical simulation or local "center field measurement" and theoretical gap length
 - Central field from previous measurement
 - Comparison with SSW
- Longitudinal variation corresponds to simulation

Shaft position variation

Pawel Kosek - SuperFRS Magnets IMMW21

Stretched wire

- 400 mm stroke
- Absolute positioning accuracy 1um
- Movement error better than 0.01mm
- Optical vibrations sensor
- Wire tension sensor
- CuBe wire 0.1mm
- Ceramic ball bearings

SSW evaluation – center localization

Co-directional stages movement – 4 steps (2 directions forth and back)

center =
$$-\frac{\Delta x}{2} \frac{(\Phi_1 - \Phi_3)}{(\Phi_1 + \Phi_3)} = -\frac{\Delta x}{2} \frac{(\Phi_2 - \Phi_4)}{(\Phi_2 + \Phi_4)}$$

Counter-directional movement for pitch and yaw

Measured Y center change due to the sag

- Precision @2σ better than 0.01mm
- Sag correction @ 3.5 m stages distance

0.4

0.1 E

-0.1

-0.2

-0.3 ^L

1

2

[gram⁻¹]

3

4

 $h = -\frac{\lambda_m g L^2}{8T} = -0.23 mm$

SSW evaluation - gradient

- Comparison to rotating coil (shaft gap calibration)
- Dependency on step size (poor S/N) Gdl@400A = 0.519 Tm/m (~1/16 of nominal Gdl for SQ)
- X and Y plane movement difference
- Effect on mainfield because of harmonics <1 unit

	Value	Uncertainty	Unit
Gap total	6.5	+-0.1	mm
Gdl in the center (QIMM)	0.738517	+-0.00005	T/m
Gdlin the gap	0.0048	+-0.0001	Tm/m
Gdl– Rotating Coil (no gap)	0.514057	+-0.00004	Tm/m
Gdl– Rotating Coil (with gap)	0.518857	+-0.00005	Tm/m
Gdl SSW	0.51898	+-0.0002	Tm/m
Difference SSW to Rotating coil (in units)	-2.4	~ +-3	10^-4

Pawel Kosek - SuperFRS Magnets IMMW21

Trajectory points

SSW evaluation - harmonics

- Circular trajectory
- 32 steps
- Tangential coil-like movement: 167mm radius, 30mm steps
- Radial coil-like movement- 20 mm steps, smaller radius -> extrapolation to 167mm (but also errors)

 Standard Fourier expansion Harmonics analysis

$$\kappa_{tang} = \frac{\left(R_{ref} + \frac{\Delta z}{2}\right)^n - \left(R_{ref} - \frac{\Delta z}{2}\right)^n}{n}$$

$$\kappa_{rad} = \frac{2i}{n} (R_{ref})^n * \sin\left(\frac{n * \Delta\theta}{2}\right)$$

Pawel Kosek - SuperFRS Magnets IMMW21

0.15

0.1

0.05

-0.05

y [mm]

SSW evaluation - harmonics

Normal Harmonics

SSW evaluation - harmonics

Skewed Harmonics

SSW harmonics – sag effect

Pawel Kosek - SuperFRS Magnets IMMW21

Translating Flux-meter

New 4 m measurement length translating fluxmeter for dipoles

Based on the prototype build in 2015

PCB plate with

- 13 coils of 0.6 m² (w=28mm l =110 mm)
- 1D Hall probe for offset adjustment

Aluminium structure

- Guiding system
- Non magnetic linear encoder (5 μm resolution)
- Construction in progress...

Thank you!

Pawel Kosek - SuperFRS Magnets IMMW21

Additional slide 2

Figure 1.24: Different transversal positions and their effect on the bucking ratio

03/07/2019

-0.45

-10

-5

0

 Δ z in mm

10

5

Additional slide 3 - 3D Mapper

3D mapper for dipole

3D with 3000 x 1000 x 1000 mm stroke mapper and 3D hall probe sensor

Figure 7.14: The magnetic flux profile for the 5 coil array.

Figure 7.17: The integral homogeneity plot

Figure 7.15: A close-up of the upper part of the field profile. Every coil profile is drawn with a different colour.