Optimization of a Three-Axes Teslameter for the Calibration of the Athos Undulators at PSI

Johann Cassar

Supervised by Dr Ing. Andrew Sammut

Co-Supervised by Dr Ing. Nicholas Sammut and Dr Marco Calvi

Project done in collaboration with the Paul Scherrer Institute and SENIS AG

Presentation Outline

- Background and Problem Definition
- Instrumentation Technology
- Instrument Architecture
- Instrument Development
- Final End Product
- Instrument Calibration
- Instrument Performance
- Conclusion
- Demonstration Videos

Background and Problem Definition

Hall Probe Advantages	Hall Probe Disadvantages
Fast Measurement	Offset
Very Small in Size	Highly Non-Linear
Simultaneous Measurement of 3 Axes	Temperature Sensitivity
Suitable for mapping non-uniform fields	Drift with Time

[1] P. Scherrer Institut (2012), "SwissFEL Concept Design Report", p. 5.

Instrumentation Comparison

OLD Teslameter	NEW Teslameter	
Bulky in size (separate blocks)	Substantial Reduction in size	
ONLY Analogue Instrument	Fully Integrated Analogue and Digital Instrument	
External 16 Bit Resolution Digitisation	22 Bit Resolution Digitisation	
Hardware Gain Calibration	No Hardware Gain Calibration	
Offline Software Calibration	On Board Software Calibration	
Separate Interface via a PLC system to Heidenhain Absolute Linear Encoder	Integrated Interface to Heidenhain Absolute Linear Encoder	
Interface to DC via DLC system	micro SD Card interface	
Interface to PC via PLC system	USB 2.0 interface	
Off-the-Shelf Instrumentation System	Application Tailored Instrument	
220 mm x 103 mm x 53 mm	150 mm x 50 mm x 45 mm	

≈ 7 times REDUCTION of ANALOGUE CIRCUITRY

ANALOGUE

ANALOGUE + DIGITAL

Slide 5 of 48

Hall Probes - Theory of Operation

Spinning Current Technique

- True Hall Voltage
- Planar Hall Voltage
- Offset Voltage at Zero Field
- 1/f noise

[2] D.R. Popovic et al, "Three-Axis Teslameter With Integrated Hall Probe," *IEEE Trans on Instrumentation and Measurement*, vol. 56, (4), pp. 1396-1402, 2007.
 [3] "Hall Probe S for H3A Magnetic Field Transducers," SENIS, Neuhofstrasse, Baar, Switzerland, May 2014.

Slide 6 of 48

Presentation Outline

- Background and Problem Definition
- Instrumentation Technology
- Instrument Architecture
- Instrument Development
- Final End Product
- Instrument Calibration
- Instrument Performance
- Conclusion
- Demonstration Videos

Slide 8 of 48

Antialiasing Filter and Analogue to Digital Converter

Analogue 3rd Order Low Pass Differential Butterworth

Antialiasing Filter

- Filter Bandwidth: 500 Hz
- Attenuation of 51 dB at 7.8 kHz Switching Frequency

24 Bit, 4 Channel Delta-Sigma ADC (ADS131A04)

- Simultaneous Sampling of 4 Independent Channels
- No Hardware Multiplexing
- 22 Bits Effective Resolution at 1 kHz Acquisition Frequency

Analogue to Digital Converter - Sinc³ Filter

Sinc³ Filter Phase Response

• Group Delay caused by the Linear Phase Response.

Sinc³ Filter Magnitude Response

• Different Bandwidth Response according to Output Data Rate

[4] "Data Sheet for ADS131A0x 2- or 4-Channel, 24-Bit, 128-kSPS, Simultaneous-Sampling, Delta-Sigma ADC," TI, Dallas, TX, USA, Rep. SBAS590D, Mar. 2016 [rev. Jan. 2018].

Encoder Interface Synchronization

8.4 µs

Synchronization between Magnetic Field Readings and Encoder Position reading occurs at a jitter free delay of 8.4 $\mu s.$

This delay is equivalent to 1680 clock cycles for the microcontroller to establish communication with the encoder on the ADC falling edge interrupt.

Instrument Development

First Prototype Board 2 Layer PCB Analogue Circuitry ONLY FUNCTIONALITY TESTING

Second Prototype Board 8 Layer PCB Analogue Circuitry + Digital Circuitry PERFORMANCE TESTING

Third Final Board 8 Layer PCB OPTIMIZATION PERFORMANCE TESTING

Slide 12 of 48

8 Layer PCB Design

Final End Product Instrument

Instrument Dimensions: 150 mm x 50 mm x 45 mm

Presentation Outline

- Background and Problem Definition
- Instrumentation Technology
- Instrument Architecture
- Instrument Development
- Final End Product
- Instrument Calibration
- Instrument Performance
- Conclusion
- Demonstration Videos

Instrument Calibration

The sequence of the tests performed are:

- 1. Non Linearity Compensation
- 2. Temperature Output Adjust Compensation
- 3. Temperature Compensation of Offset
- 4. Temperature Compensation of Sensitivity
- 5. Electronics Offset Temperature Compensation

Slide 16 of 48

Instrument Calibration - Non Linearity

Hall Probe is exposed to the whole ± 2 T range in 50 mT steps at Ambient reference temperature of 24 °C.

The non linear relation can be modelled using different orders of polynomial fits.

Slide 17 of 48

Instrument Calibration - Temperature Compensation of Offset and Sensitivity

Slide 19 of 48

Noise Performance Figures of Merit

$$V_{rmsB} \approx \left[NSD_{1/f}^2 \cdot 1Hz \cdot ln \frac{f_H}{f_L} + 1 \cdot 22 \cdot NSD_W^2 \cdot f_H \right]^{1/2}$$

Offset Fluctuation and Drift

- **1/f noise** at quasi DC measurement conditions.
- Bandwidth from **0.1 Hz to 10 Hz (f_L to f_H)**.
- Calibrated data over a 10 s period at ZERO GAUSS.

Broadband Noise

- White noise at full measurement bandwidth.
- Bandwidth from 10 Hz to 500 Hz.
- Calibrated data over a 10 s period at **ZERO GAUSS**.

Output Data Rate / kHz	Offset Fluctuation and Drift (0.1 Hz - 10 Hz) / μT _{pp}	Broadband Noise (10 Hz - f _T) / μT _{pp}
1	4.69	9.36
2	6.56	12.3
4	6.96	14.34
8	7.59	17.16

Conclusion: Project Challenges and Achievements (1)

Challenges	Achievements	
Instrument Physical Size Restriction		
Maximum Enclosure Dimensions: 50 mm x 60 mm x 150 mm (W x H x L)	Instrument Aluminium Enclosure External Dimensions: 50 mm x 45 mm x 150 mm (W x H x L)	
Optimization of Analogue Circuitry		
Improved Analogue Interface to the 3 Axes SENIS Hall Probe	Very Fast Analogue Switches 3 rd Order Butterworth LPF Improved Temperature Stability of Pre-Amp Stage	
Excellent Noise Specifications in the µTesla Range		
Analogue Circuitry must be very noise immune Very High Resolution on Digitisation	Very Low Noise Amplifiers 24 bit Delta-Sigma ADC	

Conclusion: Project Challenges and Achievements (2)

Challenges	Achievements	
Temperature Drift Effects and Compensation		
Control and Monitoring of Temperature inside Instrument Enclosure	Temperature Monitoring: Digital Temperature Sensor Temperature Stabilization: Cooling Fan	
Microcontroller Interface Capability to numerous Peripherals		
13 PWM Control Signals SPI Interface to ADC SPI Interface to SD Card I ² C Interface to Digital Temperature Sensor USB Interface to Raspberry Pi EnDat 2.2 Protocol to Heidenhain Encoder	200 MHz, 32 bit floating point Microcontroller Enhanced PWM Modulator 3 High Speed SPI channels 2 I ² C Interfaces USB 2.0 Interface Configurable Logic Block for interfacing of Encoder	
On Board Calibration Implementation		
Calibrated Magnetic Field value output from the instrument	On Board Programmed Calibration Algorithm with 32 bits floating point precision	

Conclusion: Specifications Comparison

Old Analogue Teslameter	(H3A SENIS Transducer)	New Analogue & I	Digital Teslameter
Bandwidth			
2 kHz Output Data Rate 500 Hz		1 kHz Output Data Rate	262 Hz
	2/4/8 kHz Output Data Rate	500 Hz	
Offset Fluctuation and Drift (0.1 Hz – 10 Hz)			
2 kHz Output Data Rate	$4 \ \mu T_{pp}$	2 kHz Output Data Rate	6.56 μT _{pp}
Broadband Noise (10 Hz – 500 Hz)			
2 kHz Output Data Rate	7.2 μT _{pp}	2 kHz Output Data Rate	12.3 μΤ _{pp}
Instrument Physical Size			
220 mm x 103	mm x 53 mm	150 mm x 50	mm x 45 mm

Conclusion: Calibration Possible Improvements

Electronics Temperature Compensation of Sensitivity: Calibration

of the effect of the change in the electronics temperature for the

Non Linearity Calibration: Better control of the

Ambient Temperature Stability.

Slide 24 of 48

Conclusion: Further Suggestions for Additional Improvements and Future Work

- Implementation of the proper Compensation for the difference in the spatial position of the sensor dies that are slightly Offset from the centre of the Undulator Geometrical axis.
- Improvement in the **Bandwidth response** of the on board Sigma-Delta ADC.
- Investigation for alternative bias methods of the Hall Probe rather than the Spinning Current technique due to switching noise spikes that set the major performance limitation.
- **On-the-fly data transfer** from the SDRAM to the micro SD card and USB for the reduction of data transfer time.

Video Demonstration

Slide 26 of 48

Athos Prototype - AppleX

Slide 27 of 48

Linear Horizontal - LH

Slide 28 of 48

Circular Plus – C⁺

Slide 29 of 48

Linear Rotation – 0 - 90°

Slide 30 of 48

New Linear Rotation – ONLY for AppleX (1)

Slide 31 of 48

New Linear Rotation – ONLY for AppleX (2)

Slide 32 of 48

New Linear Rotation – ONLY for AppleX (3)

Slide 33 of 48

New Linear Rotation – ONLY for AppleX (4)

Slide 34 of 48

New Linear Rotation – ONLY for AppleX (5)

Slide 35 of 48

New Linear Rotation – ONLY for AppleX (6)

Slide 36 of 48

New Linear Rotation – ONLY for AppleX (7)

Slide 37 of 48

New Linear Rotation – ONLY for AppleX (8)

Slide 38 of 48

New Linear Rotation – ONLY for AppleX (9)

Slide 39 of 48

New Linear Rotation – ONLY for AppleX (10)

Slide 40 of 48

New Linear Rotation – ONLY for AppleX (11)

Slide 41 of 48

New Linear Rotation – ONLY for AppleX (12)

Slide 42 of 48

New Linear Rotation – ONLY for AppleX (13)

Slide 43 of 48

New Linear Rotation – ONLY for AppleX (14)

Slide 44 of 48

New Linear Rotation – ONLY for AppleX (15)

Slide 45 of 48

New Linear Rotation – ONLY for AppleX (16)

Slide 46 of 48

New Linear Rotation – ONLY for AppleX (17)

Slide 47 of 48

ANY QUESTIONS ?

Slide 48 of 48

Extra Slides

Performance Comparison of the Old and New Instrumentation

Slide 51 of 48

Electronics Temperature Compensation

Slide 52 of 48

Instrument Calibration - Temperature Compensation of Offset and Sensitivity (2)

Calibration Verification

- Uncalibrated Output Peak Error of **1.93** % over the Full Range.
- Calibrated Output Peak Error of **0.02** % over the Full Range.

Spinning Current Technique

Spinning Current Suppression:

- Hall Offset Voltage
- PA Offset Voltage
- Planar Hall Voltage
- 1/f noise

Slide 54 of 48

Noise Performance (1)

$$BW_n = f_H \cdot K_n$$

 BW_n is the Effective Noise Bandwidth f_H is the Upper Cutoff Frequency K_n is the Brick Wall Conversion Factor

Number of Poles in Filter	K _n AC Noise Bandwidth Ratio
1	1.57
2	1.22
3	1.16
4	1.13
5	1.12

Noise Performance (2) - 1/f noise

Derivation of 1/f region noise

 E_n is the Normalized RMS Noise Voltage (V/Hz) e_{normal} is the Noise Voltage Spectral Density (V/ \sqrt{Hz}) E_{nf} is the Total 1/f RMS Noise Voltage (V)

$$E_{n} = \frac{e_{normal}}{\sqrt{f}}$$

$$E_{n}^{2} = \frac{e_{normal}^{2}}{f}$$

$$E_{nf}^{2} = \int_{f_{L}}^{f_{H}} \frac{e_{normal}^{2}}{f} df = e_{normal}^{2} \cdot \left(\ln(f_{H}) - \ln(f_{L})\right)$$

$$E_{nf} = e_{normal} \cdot \sqrt{\ln\left(\frac{f_{H}}{f_{L}}\right)}$$

Slide 56 of 31

Magnetic Field Errors in Undulators

ADC Sinc³ Filter Phase Delay Compensation

ADC Sinc³ Filter Magnitude Analysis - Aliasing

Slide 59 of 48