

WELCOME

Joel Chavanne Accelerator an Source Division, Insertion Devices and Magnets

OUTLINE

• ESRF EBS

- Overview
- Magnets & Photon Sources
- Status
- IMMW21
 - Context & scope
 - practical information

3RD GENERATION LIGHT SOURCES

- Many Dedicated straight section for undulators
 - Low horizontal emittance ~ few nm
 - ESRF was the first facility constructed
 - SR commissioning completed in early 1992
 - First undulator installed in June 1992
 - Progressive ID installation & beamline construction
- First facilities with high Electron Energy

Beam current: 100 mA to 200 mA

APS 7 Gev

3RD GENERATION LIGHT SOURCES

- From end of 90s : many medium Energy rings constructed from green field
 - Energy: 2.0 to 3.5 Gev
 - Horizontal emittance ~ 0.5 nm 5 nm
 - Beam current up to 500 mA with top up in most of cases

SOLEIL, DIAMOND, CLS, ALBA, SSRF, TPS ,Australian Synchrotron, NSLS II ...

• Transformation of existing old colliders to low emittance SR facility

Ex: PETRA III

- Energy: 6Gev
- Horizontal emittance : 1 nm
- Beam current 100 mA

ESRF UPGRADE

2009 2015

Upgrade PHASE I – 180 M€

- New beamlines (19 experimental stations)
- New ultra-stable experimental hall
- Improvement and refurbishment of most of the scientific equipment and accelerator infrastructure

- 150 M€ ESRF-EBS
- Construction of a new storage ring
- Construction of new beamlines
- Important instrumentation program
- Intensified big data strategy

2015

2022

BRILLIANCE IMPROVEMENT AT ESRF UP TO 2018

ESRF EBS: 4TH GENERATION SR LIGHT SOURCES

The quest: Improving transverse coherence of x-ray photon sources

• decreasing the horizontal emittance of electron beam by at least one order of magnitude

Electron beam	H emittance [nm] V emittance [pm]		Rel. energy spread[%]	
ESRF 2018	4	5	0.1	6 GeV, 0.2 A
EBS 2020	0.132	5	0.094	

NEW GENERATION OF MAGNET LATTICE FOR LIGHT SOURCES

Achieving lower horizontal emittance requires new magnet lattice

- Based on Multiple Bent Achromats: 7BA @ ESRF (32 cells)
- Upgrade context and associated constraints (SR tunnel, beamlines,... etc)

~ all 3rd generation SR light sources

Cell packed with magnets

- Stronger focusing:
- Smaller beta functions
- Smaller dispersion

MAGNETS

- Important design effort, new types of magnets (~ 1000 magnets in total)
- Compact magnet lattice
- Small aperture vacuum chamber technology
- Reduce wall plug power as much as possible
- 4 supporting girders/cell

Magnet layout in one cell

ESRF

QUADRUPOLES

Moderate gradients (MG)

Parameter	Value	Unit
Nominal strength	Up to 54	T/m
Mech. length	162 - 295	mm
Bore radius	16.4	mm
Nominal current	95 - 91	А
Power	0.7 – 1.1	kW
# pre-series	8	
# of series	384	
GFR (HxV)	13x9	mm
∆G/G in GFR	<10 ⁻³	

High gradients (HG)					
Parameter	Value	Unit			
Nominal strength	89 - 87	T/m			
Mech. length	388 - 484	mm			
Bore radius	12.7	mm			
Nominal current	95 - 91	А			
Power	1.9 – 1.7	kW			
# pre-series	2 - 2				
# of series	64 - 64				
GFR (H x V)	7x5	mm			
Δ G/G in GFR	<10-3				

SEXTUPOLES & OCTUPOLES

Sextupole Magnets

Parameter	Value	Unit
Nominal strength	1700	T/m ²
Mechanical length	166 - 200	mm
Bore radius	19.2	mm
Nominal current	62	А
Power consumption	0.5	kW
# of pre-series	2 - 2	
#of series	128 - 64	
GFR	13x9	mm
ΔH/H	10 %	

Solid iron yoke

Octupole Magnets

Parameter	Value	Unit
Nominal strength	36900	T/m ³
Mechanical length	90	mm
Bore radius	18.6	mm
Nominal current	54	А
Power consumption	0.1	kW
# of pre-series	1 - 1	
# of series	33 - 31	
GFR (HxV)	13x9	mm
ΔΟ/Ο	10%	

COMBINED FUNCTIONS DIPOLE-QUADRUPOLE (DQ)

Parameter	Value	Unit
Nominal dipole	0.55 – 0.39	Т
Nominal strength	36 - 31	T/m
Mechanical length	1028 - 800	mm
Nominal current	85.5 - 90	А
Power consumption	1.6 – 1.2	kW
Number of pre-series	2 - 2	
Number of series	64 - 32	
GFR (HxV)	7x5	mm
Δ G/G in GFR	< 5.10 ⁻³	
•Independent tuning of <i>B</i> •±2.5 % at fixed <i>B</i> and ±2	and <i>G</i> A in correction c	coils

ESRF

DIPOLES WITH LONGITUDINAL GRADIENT (DL)

In-House development

Permanent magnet structure

- 5 modules/DL: 5 field steps
- Length: 1.8 m
- 128 units (64 DL1, 64 DL2)
- PM material: Sm₂Co₁₇ ~ 12000 blocks
- Construction completed in September 2017

PHOTON SOURCES IN EBS: FIRST STAGE

- re-use existing undulators (6 GeV -> 6 GeV)
- Build 6 undulators
- 2 CPMUs

Important refurbishment & adaptation:

- In-Vaccum undulators & CPMUs
 - New flexible transitions
 - Integration of photon absorbers
 - cooling modification
 - ... etc

ESRF01

IVU/CPMU adaptation

BENDING MAGNETS SOURCES

Upgrade context:

The trend is to reduce the dipole field in storage rings (0.86 T -> ~ 0.5 T@ ESRF)

- higher number of dipoles
- Lower horizontal emittance
- Critical photon energy : $E_c = \propto B$

Consequence: loss of performance in hard X-ray region

Needs fo alternative BM type sources

BM SOURCE TYPES

Permanent Magnet structures

- Short Bending Magnet (SBM)
 - 2 mrad X-ray fan
 - 8 units
- 2 Pole Wiggler (2PW)
 - 1.7 mrad x-ray fan
 - 2 possible configurations
 - 8 units
- 3 Pole Wiggler (3PW)
 - 2 mrad fan
 - 1 unit (BM18)

BM SOURCES

source

BM SOURCES: BRILLIANCE

Electron beam	H emittance [nm]	V emittance [pm]	Rel. energy spread[%]	
ESRF 2018	4	5	0.1	6 GeV, 0.2 A
EBS 2020	0.132	5	0.094	

ESRF

EBS MASTER PLAN (2015-2020)

Master Plan and Major Milestones

EBS: STATUS

24 June 2019

- All magnet girders in the SR tunnel
- RF cavities & waveguides installed
- Front ends installed
- Cabling and piping in progress
- Transfer line Booster/SR in progress

- From 15 July to end of October: straight sections
 - Vacuum chambers
 - Insertion device installation
 - 70 undulators including 10 IVUs/CPMUs

The European Synchrotron

PHOTON SOURCES: NEXT STEP

Main focus : use of transverse coherence

EBS: MAGNETIC MEASUREMENT ACTIVITIES

Accelerator magnets:

- Stretched Wire (SW) measurements
 - SW benches built by ESRF (see ESRF talks @ IMMW20)
 - 5 units at manufacturer/s premises
 - 3 units at ESRF
- SW benches sold after magnet construction (6 units)
- ESRF can provide turn key systems

Insertion Devices:

- Stretched wire for Field integral measurements
- Hall probe mapping
- Dedicated system for CPMU measurements
 - Integrable in vacuum chamber
 - Field integral measurements
 - Local field mapping
- ESRF talks this week
- Lab visits on Thursday

INDUSTRY INVOLVED IN EBS MAGNETS

Electro-magnets

- BINP (Russia)
- DANFYSIK (Denmark)
- SEF (France)
- SIGMAPHY (France)
- TESLA Engineering (UK)

Permanent- magnets

- Raw Iron material: Dillinger (Germany)
- Iron machining CECOM (It), AMF (UK)
- Permanent magnet material: MAGSOUND (China)

4TH GENERATION SR LIGHT SOURCES: FEW COMMENTS

The path to lower emittance in SR based light sources has been opened with new MBA lattices

- Green field facilities
 - MAX IV, SIRIUS, HEPS
- Feasible Upgrades
 - ESRF, APS, ALS, SLS, SPRING8, SOLEIL, DIAMOND,,~ every 3rd generation light sources
 - Use or permanent magnets due to high compactness & energy saving
 - Increasing magnet activities in comings years

What next ?

- Limiting factor in 4th GLS will be longitudinal: energy-time
 - Undulator radiation dominated by energy spread of electron beam
 - Time structure for longitudinal coherence in electron bunches : peak brilliance
 - Example: EEHG @ SLS2

Probably a central topic for 5th generation SR light sources

IMMW21

EPN Science Campus -

• EMBL

ESRF

- ESRF
- IBS
- ILL
- PSB
- PSCM

IMMW21 @ Hotel Mercure Grenoble Centre Président

IMMW21: SCOPE & CONTEXT

- Scope: mix together developers and users in magnetic measurements
 - Sensors
 - Methods
 - Ideas
- Context

- 4th generation SR light sources
 - Magnetic measurements of new types of accelerator magnets
 - New generation of Insertion Devices (shorter period, smaller gap)
 - Transfer of know how to industry

IMMW21: PARTICIPATION& ORGANIZATION

- 75 participants
 - 17 countries
 - 8 colleagues from IHEP (China) could not get the visa on time

International Scientific Organizing Committee

SLAC

Local Organizing Committee

Name	Affiliation	Name	Affiliation
Marco Buzio	CERN	Champadding Danahdarrahmana	
Josep Campmany	CELLS	Chamseddine Benabderranmane	ESKF
Joel Chavanne	ESRF	Sandra Cardot Joël Chavanne - Workshon Chair	ESRF
Hwang Ching-Shiang	NSRRC		
loseph DiMarco	ΕΝΔΙ	Gael Le Bec - Workshop Co-Chair	ESKF
		Philippa Lean	ESRF
Animesh Jain	APS	Loïc Lofobyro	ECDE
Gael Le Bec	ESRF		ESKE
Ed Rial	BESSY	Reine Versteegen	ESRF
Stéphane Sanfilippo	PSI		

Zach Wolf

PROGRAMME & INFORMATION

IMMW21: url

https://www.esrf.eu/home/events/conferences/2019/immw21-1.html

			_			
	23/06/2019	24/06/2019	25/06/2019	26/06/2019	27/06/2019	28/06/2019
	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday
AM		Overview	Overview	Mathada	Methods	Meas. reports
08.30-12.00		Overview	Meas. reports	wiethous	Sensors	Summary
Lunch						
PM				Instruments		
13.30-17.00		Sensors	Instruments	Fidu. and	Visit	
Evening	Welcome			Dinner		

Weather

Expected heat wave

27/06 Workshop is at ESRF

TRANSFER TO/FROM ESRF AND RESTAURANT

Tram tickets (4) given to participants

- To be validated at tram station before entering the tram
- Validity is 1 hour

- Wednesday to go to the cable car for the restaurant
- Thursday to go to ESRF

See information in provided documents

Do not hesitate to contact the members of the local organizing committee for any question

INDUSTRY @ IMMW21

Industrial exhibitors: June 24 to June 26

κλ~~~

Sponsors

IMMW21 Welcome | J.Chavanne

THANK YOU

ENJOY IMMW21

