IN-VACUUM COLD MEASUREMENT BENCH DEVELOPMENT

For the CPMU upgrade programme at Diamond Light Source

Z. Patel

A. George, P. Harris, S. R. Milward, E. C. M. Rial, J. H. Williams

CPMU upgrade programme

- All straight sections filled
- Plans for up to 6 beamlines to upgrade to CPMUs
 - Factor of 2-4 increase in brilliance at 12.6 keV
 - Factor of 2-3 increase in flux (standard white beam slit aperture) at 12.6 keV
- DII upgrade (2025-2026) –
 further demand

Beamline	Current λ _u [mm]	Periods	CPMU λ _u [mm]	Periods
124	21	95	17.6	113
103	21	95	17.6	113
114	23	85	17.6	113
104	23	85	17.6	113

The cold bench

- CPMU may change when cold
- Hall probe & stretched wire
- Bench mounted on 3 columns through ion pump/vacuum gauge ports
- Platform attached to lower beam
- Extra end vessels for laser, feedthrough and wire mounts

Hall probes

- 3 x 1D AREPOC HHP-SU probes
 (3 mm x 4 mm x 0.9 mm)
- Active area: 20 μm x 20 μm
- 2 x PT100s (only 1 used)

- Macor plate 3 mm thick
- Probes glued in place
- Soldered connections

26/06/2019 5/20

Hall probe design

- Stepper motor, linear rail & pulley cable
- Laser interferometer for position & triggering
- Ramp to park for wire measurements
- Limit switch for homing 3 μm repeatability

- Height and X pos. set in gap approx. using telescope
- Laser aligned with combination of laser adjustment & bench adjustment

The stretched wire

- Supplied by Danfysik
- X and Z stages on concrete blocks
- Ti alloy wire minimise sag
- Tensioned to 50 Hz, but Keithley acts as a lowpass filter anyway

26/06/2019 7/20

Stretched wire scans

$$I_z^{meas}(x_i) = \frac{\overline{V_i}}{N\overline{v_x}}$$

 $I_x^{meas}(z_i) = \frac{\overline{V_i}}{N\overline{v_-}}$

- Field integrals to correct field maps from Hall probe
- Iz measured in x sweep (15 mm/s, $S = 15 \text{ nV/G} \cdot \text{cm}$)
- Ix measured with vertical movement (4 mm/s, $S = 4 \text{ nV/G} \cdot \text{cm}$)
- Triggers (positional) need to match up in both directions
- Integration time = 20 ms (PLC = 50 Hz)
- Repeat 10 times to average, st.dev. = 0.08 G·m (increasing repeats doesn't improve st. dev. further)

Cold bench control

- 3 x 1D hall probes -> Keithley 2700
- Stretched wire -> Keithley 2812A
- PT100 -> Keithley 2700
- Stepper motors controlled by Geobrick (Delta Tau)

Hall scan repeatability

Large difference between motor position and encoder position during

on-the-fly scans:

offset + cyclical behaviour

- Wavelength of laser adjusted for vacuum
- Temperature adjustment of field

Hall scan repeatability

Step scan reduces vertical oscillation of probe but some position differences remain -> look at peak field only

Hall probe alignment

- Manual x and z adjustment of bench on 3 columns
- Set roughly central in gap magnet beams offset and tilted around probe (limited by the allowable tilt on the ID)

Could not tilt ID further – tilt protection system

Stretched wire alignment

 $C = \frac{2\pi l \epsilon_0 \epsilon_r}{\cosh^{-1} \frac{h}{r}}$

 Capacitance measurements: 2 x wire over ground plane for Z height and taper

$$C_{total} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2}}$$

- Levelled in x using bubble level (50μm/1m)
- X taper has minimal effect on Iz

Hall scan comparison with lab bench

- Lab Hall probe bench from ESRF
- Higher field from main bench main Hall probe not centred as well/calibration issue
- Spikes in difference plot point to real changes in the ID
- Changes reflected in horizontal trajectory

Hall scan comparison with lab bench

Phase plot affected by bench column positions

Stretched wire scan comparison

- Rotating coil from ESRF
- Error bars represent st. dev.
- Hilbert transform of Iz data should give Ix

Central integrals:

$$Iz_{coil} = -0.1 \text{ G} \cdot \text{m}, \quad Ix_{coil} = +0.1 \text{ G} \cdot \text{m}$$

 $Iz_{wire} = +0.5 \text{ G} \cdot \text{m}, \quad Ix_{wire} = +2.0 \text{ G} \cdot \text{m}$

Measurements when cold

Fourier transform of field data: period decreased by 72 µm; 70 µm expected

- Laser had to be realigned slightly
- Field increase larger than expected
- Gap smaller than measured

Difficult to tell if phase affected by ID columns due to effect from bench columns

Measurements when cold

- Wire scans affected by vacuum pump vibrations
- Now the Hilbert transformation seems closer to the measured data

Iz warm = +0.5 G·m Iz cold = -0.17 G·m Ix warm = +2.0 G·m Ix cold = +4.4 G·m Iz st. dev. from 0.08 G·m to 1.5 G·m Ix st. dev. from 4.7 G·m to 17.3 G·m

Measurements when warm (after cooling)

- Bench permanently affected by cooling
- Peak field difference up to 4 mT before & after cooling
- Phase error changes masked by bench column effects

Summary of original bench

Successes

- Peak field (mostly) matched the lab bench measurements
- Able to reach good vacuum
- Works at 77K

<u>Issues</u>

- Pulley system too slack can't use closed loop control or on-the-fly scans
- Thinness of the rail deforms during and after the cooling that can be seen in the measurements
- Need a more accurate way of aligning the Hall probe & measuring the gap
- Noise on wire measurements

26/06/2019 **20**/20

Bench re-design

- Magnet girder re-designmore space in vessel
- Thicker rail
- Pulley running on both sides
- From 3-axis support to 2-axis
- Motorised vertical adjustment

PSD to measure height

