

First Results of a Pulse Wire Measurement System for ID Characterization at MAX IV

P. N'gotta, M. Ebbeni, A. Thiel, H. Tarawneh

IMMW21 Grenoble, France

June 2019

MAX IV ID Team

H. Tarawneh, Team Leader

A. Thiel, Mechanical Engineer

M. Ebbeni, Magnetic Engineer

P. N'gotta, Post-Doc

Outline

- □ Status of MAX-IV ID project
- □ Presentation of the PWM method
- Numerical simulations
- □ PWM bench implementation
- □ Measurements results
- Conclusion

SXL FEL Undulator development

Magnet type	SmCo (B _r =1.1 T)	
Period Length	40 mm	
Photon energy range	0.25 – 1 keV	
Magnetic gap range	8.0 – 17.3 mm	
Effective K range	3.9 – 1.51	
Max. gap / min. eff. K	28 mm / 0.55	
Undulator magnetic length	3 m	

Due to limited accessibility a functioning pulsed wire system is needed.

- Horizontal slit can be incorporated if necessary for Hall-probe access.

Presentation of the PWM method

Pulsed wire system layout

- Local field measurement (Similar to Hall probe)
- First and second Field integral measurements
- Magnet alignement (magnetic center)
- Fast measurement (<50 ms !)
- Signal distorsion (dispersion, resonance, pertubations, ...)
- Low signal to noise ratio
- Wave damping
- Wire Sag

Presentation of the PWM method

Presentation of the PWM method

Simulations goals

- ✓ Signal dispersion
- Test of the wave speed identification
- \checkmark Test the efficiency of the correction method
- ✓ Test the sensitivity of the correction result

Simulations Parameters

parameter	variable	value	Unit
Undulator period	λ_{u}	20	mm
Undulator Length	L _u	2	m
Wire tension	Т	5	Ν
Wire flexural rigidity	Ei _w	$6.4 \cdot 10^{-7}$	Nm ²
Wire mass per unit length	μ	$6.9 \cdot 10^{-5}$	kg/m
Current pulse amplitude	I _{pulse}	2	А

- Copper-Nickel-Silicon wire
- 100 µm diameter
- $C_0 = 269 \text{ m/s}$

Wire displacement expression

$$V_{s}(t) = \frac{I_{\text{pulse}}}{2\mu} \int_{-\infty}^{\infty} \frac{e^{i\omega\Delta t} - 1}{\omega^{2}} \overline{B}(k) e^{-i\omega t} dk \quad \text{(short and long current pulse)}$$

$$V_{s}(t)' = \frac{I_{\text{pulse}}}{2\mu} \int_{-\infty}^{\infty} \frac{\left(e^{i\omega\Delta t} - 1\right)\left(1 - e^{i\omega\Delta t}\right)}{\omega^{2}} \overline{B}(k) e^{-i\omega t} dk \quad \text{(positive+negative current pulse)}$$

Discrete version for simulation

PWM bench implementation

Hall probe measurements

> Low Dispersive effects

Conclusion

- PWM system is operationnal
- □ First results encouraging
- □ Good agreement between simulation and measurements
- □ Dispersion correction code effective
- □ Improvement of the PWM model (remove the wire resonance mode)
- □ Reduction of the signal noise with the Lock-in amplifier

Thank for your attention

References

- **R.W Warren**, Nuclear Instruments and Methods in Physics research, section A 272 (1988) 257.
- **T.C Fan et al.**, Pulsed wire magnetic measurements on undulator, Proceedings of the 2001 Particle accelerator conference, Chicago, 2001.
- D. Arbelaez et al., A dispersion and pulse width correction algorithm for the pulsed wire method, Nuclear Instruments and Methods in Physics Research A, 716, (62-70), 2013
- M. Valleau, Measurements of SOLEIL Insertion Devices using the pulsed wire method, IMMW18, New york, 2013
- M. Kasa, methods for correcting dispersion and pulse width effects during pulsed wire measurements, Nuclear Instruments and Methods in measurement, 122, (224-231), 2018
- H. tarawhneh et al., Compact APPLE X for Future SXL FEL and 3 GeV Ring at MAX IV Laboratory, IPAC2019, Melbourne, 2019
- A.B. Temnykh, Delta undulator for Cornell Energy Recovery Linac, Phys. Rev. ST Accelerators and Beams 11, 120702, Dec. 2008
- Th. Schmidt et al., Magnetic design of an APPLE III undulator for SWISSFEL, Proceedings of FEL 2014, MOP043, Basel, Switzerland 2014

